Package: brulee 0.3.0.9000

Max Kuhn

brulee: High-Level Modeling Functions with 'torch'

Provides high-level modeling functions to define and train models using the 'torch' R package. Models include linear, logistic, and multinomial regression as well as multilayer perceptrons.

Authors:Max Kuhn [aut, cre], Daniel Falbel [aut], Posit Software, PBC [cph, fnd]

brulee_0.3.0.9000.tar.gz
brulee_0.3.0.9000.zip(r-4.5)brulee_0.3.0.9000.zip(r-4.4)brulee_0.3.0.9000.zip(r-4.3)
brulee_0.3.0.9000.tgz(r-4.4-any)brulee_0.3.0.9000.tgz(r-4.3-any)
brulee_0.3.0.9000.tar.gz(r-4.5-noble)brulee_0.3.0.9000.tar.gz(r-4.4-noble)
brulee_0.3.0.9000.tgz(r-4.4-emscripten)brulee_0.3.0.9000.tgz(r-4.3-emscripten)
brulee.pdf |brulee.html
brulee/json (API)
NEWS

# Install 'brulee' in R:
install.packages('brulee', repos = c('https://tidymodels.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tidymodels/brulee/issues

On CRAN:

7.47 score 67 stars 212 scripts 661 downloads 16 exports 45 dependencies

Last updated 1 months agofrom:66e19f643d. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 15 2024
R-4.5-winOKNov 15 2024
R-4.5-linuxOKNov 15 2024
R-4.4-winOKNov 15 2024
R-4.4-macOKNov 15 2024
R-4.3-winOKNov 15 2024
R-4.3-macOKNov 15 2024

Exports:%>%autoplotbrulee_activationsbrulee_linear_regbrulee_logistic_regbrulee_mlpbrulee_mlp_two_layerbrulee_multinomial_regcoefmatrix_to_datasetschedule_cyclicschedule_decay_exposchedule_decay_timeschedule_stepset_learn_ratetunable

Dependencies:bitbit64callrclicolorspacecorodescdplyrellipsisfansifarvergenericsggplot2gluegtablehardhatisobandjsonlitelabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigprocessxpsR6RColorBrewerRcpprlangsafetensorsscalessparsevctrstibbletidyselecttorchutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
Activation functions for neural networks in bruleebrulee_activations
Fit a linear regression modelbrulee_linear_reg brulee_linear_reg.data.frame brulee_linear_reg.default brulee_linear_reg.formula brulee_linear_reg.matrix brulee_linear_reg.recipe
Fit a logistic regression modelbrulee_logistic_reg brulee_logistic_reg.data.frame brulee_logistic_reg.default brulee_logistic_reg.formula brulee_logistic_reg.matrix brulee_logistic_reg.recipe
Fit neural networksbrulee_mlp brulee_mlp.data.frame brulee_mlp.default brulee_mlp.formula brulee_mlp.matrix brulee_mlp.recipe brulee_mlp_two_layer brulee_mlp_two_layer.data.frame brulee_mlp_two_layer.default brulee_mlp_two_layer.formula brulee_mlp_two_layer.matrix brulee_mlp_two_layer.recipe
Fit a multinomial regression modelbrulee_multinomial_reg brulee_multinomial_reg.data.frame brulee_multinomial_reg.default brulee_multinomial_reg.formula brulee_multinomial_reg.matrix brulee_multinomial_reg.recipe
Plot model loss over epochsautoplot.brulee_linear_reg autoplot.brulee_logistic_reg autoplot.brulee_mlp autoplot.brulee_multinomial_reg brulee-autoplot
Extract Model Coefficientsbrulee-coefs coef.brulee_linear_reg coef.brulee_logistic_reg coef.brulee_mlp coef.brulee_multinomial_reg
Convert data to torch formatmatrix_to_dataset
Predict from a 'brulee_linear_reg'predict.brulee_linear_reg
Predict from a 'brulee_logistic_reg'predict.brulee_logistic_reg
Predict from a 'brulee_mlp'predict.brulee_mlp
Predict from a 'brulee_multinomial_reg'predict.brulee_multinomial_reg
Change the learning rate over timeschedule_cyclic schedule_decay_expo schedule_decay_time schedule_step set_learn_rate