Title: | High-Level Modeling Functions with 'torch' |
---|---|
Description: | Provides high-level modeling functions to define and train models using the 'torch' R package. Models include linear, logistic, and multinomial regression as well as multilayer perceptrons. |
Authors: | Max Kuhn [aut, cre] , Daniel Falbel [aut], Posit Software, PBC [cph, fnd] |
Maintainer: | Max Kuhn <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.3.0.9000 |
Built: | 2024-12-15 05:01:51 UTC |
Source: | https://github.com/tidymodels/brulee |
Activation functions for neural networks in brulee
brulee_activations()
brulee_activations()
A character vector of values.
brulee_linear_reg()
fits a linear regression model.
brulee_linear_reg(x, ...) ## Default S3 method: brulee_linear_reg(x, ...) ## S3 method for class 'data.frame' brulee_linear_reg( x, y, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'matrix' brulee_linear_reg( x, y, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'formula' brulee_linear_reg( formula, data, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'recipe' brulee_linear_reg( x, data, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, stop_iter = 5, verbose = FALSE, ... )
brulee_linear_reg(x, ...) ## Default S3 method: brulee_linear_reg(x, ...) ## S3 method for class 'data.frame' brulee_linear_reg( x, y, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'matrix' brulee_linear_reg( x, y, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'formula' brulee_linear_reg( formula, data, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'recipe' brulee_linear_reg( x, data, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, stop_iter = 5, verbose = FALSE, ... )
x |
Depending on the context:
The predictor data should be standardized (e.g. centered or scaled). |
... |
Options to pass to the learning rate schedulers via
|
y |
When
|
epochs |
An integer for the number of epochs of training. |
penalty |
The amount of weight decay (i.e., L2 regularization). |
mixture |
Proportion of Lasso Penalty (type: double, default: 0.0). A value of mixture = 1 corresponds to a pure lasso model, while mixture = 0 indicates ridge regression (a.k.a weight decay). |
validation |
The proportion of the data randomly assigned to a validation set. |
optimizer |
The method used in the optimization procedure. Possible choices are 'LBFGS' and 'SGD'. Default is 'LBFGS'. |
learn_rate |
A positive number that controls the initial rapidity that the model moves along the descent path. Values around 0.1 or less are typical. |
momentum |
A positive number usually on |
batch_size |
An integer for the number of training set points in each
batch. ( |
stop_iter |
A non-negative integer for how many iterations with no improvement before stopping. |
verbose |
A logical that prints out the iteration history. |
formula |
A formula specifying the outcome term(s) on the left-hand side, and the predictor term(s) on the right-hand side. |
data |
When a recipe or formula is used,
|
This function fits a linear combination of coefficients and predictors to model the numeric outcome. The training process optimizes the mean squared error loss function.
The function internally standardizes the outcome data to have mean zero and a standard deviation of one. The prediction function creates predictions on the original scale.
By default, training halts when the validation loss increases for at least
step_iter
iterations. If validation = 0
the training set loss is used.
The predictors data should all be numeric and encoded in the same units (e.g. standardized to the same range or distribution). If there are factor predictors, use a recipe or formula to create indicator variables (or some other method) to make them numeric. Predictors should be in the same units before training.
The model objects are saved for each epoch so that the number of epochs can
be efficiently tuned. Both the coef()
and predict()
methods for this
model have an epoch
argument (which defaults to the epoch with the best
loss value).
The use of the L1 penalty (a.k.a. the lasso penalty) does not force parameters to be strictly zero (as it does in packages such as glmnet). The zeroing out of parameters is a specific feature the optimization method used in those packages.
A brulee_linear_reg
object with elements:
models_obj
: a serialized raw vector for the torch module.
estimates
: a list of matrices with the model parameter estimates per
epoch.
best_epoch
: an integer for the epoch with the smallest loss.
loss
: A vector of loss values (MSE) at each epoch.
dim
: A list of data dimensions.
y_stats
: A list of summary statistics for numeric outcomes.
parameters
: A list of some tuning parameter values.
blueprint
: The hardhat
blueprint data.
predict.brulee_linear_reg()
, coef.brulee_linear_reg()
,
autoplot.brulee_linear_reg()
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "yardstick", "modeldata"))) { ## ----------------------------------------------------------------------------- library(recipes) library(yardstick) data(ames, package = "modeldata") ames$Sale_Price <- log10(ames$Sale_Price) set.seed(122) in_train <- sample(1:nrow(ames), 2000) ames_train <- ames[ in_train,] ames_test <- ames[-in_train,] # Using matrices set.seed(1) brulee_linear_reg(x = as.matrix(ames_train[, c("Longitude", "Latitude")]), y = ames_train$Sale_Price, penalty = 0.10, epochs = 1, batch_size = 64) # Using recipe library(recipes) ames_rec <- recipe(Sale_Price ~ Bldg_Type + Neighborhood + Year_Built + Gr_Liv_Area + Full_Bath + Year_Sold + Lot_Area + Central_Air + Longitude + Latitude, data = ames_train) %>% # Transform some highly skewed predictors step_BoxCox(Lot_Area, Gr_Liv_Area) %>% # Lump some rarely occurring categories into "other" step_other(Neighborhood, threshold = 0.05) %>% # Encode categorical predictors as binary. step_dummy(all_nominal_predictors(), one_hot = TRUE) %>% # Add an interaction effect: step_interact(~ starts_with("Central_Air"):Year_Built) %>% step_zv(all_predictors()) %>% step_normalize(all_numeric_predictors()) set.seed(2) fit <- brulee_linear_reg(ames_rec, data = ames_train, epochs = 5, batch_size = 32) fit autoplot(fit) library(ggplot2) predict(fit, ames_test) %>% bind_cols(ames_test) %>% ggplot(aes(x = .pred, y = Sale_Price)) + geom_abline(col = "green") + geom_point(alpha = .3) + lims(x = c(4, 6), y = c(4, 6)) + coord_fixed(ratio = 1) library(yardstick) predict(fit, ames_test) %>% bind_cols(ames_test) %>% rmse(Sale_Price, .pred) }
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "yardstick", "modeldata"))) { ## ----------------------------------------------------------------------------- library(recipes) library(yardstick) data(ames, package = "modeldata") ames$Sale_Price <- log10(ames$Sale_Price) set.seed(122) in_train <- sample(1:nrow(ames), 2000) ames_train <- ames[ in_train,] ames_test <- ames[-in_train,] # Using matrices set.seed(1) brulee_linear_reg(x = as.matrix(ames_train[, c("Longitude", "Latitude")]), y = ames_train$Sale_Price, penalty = 0.10, epochs = 1, batch_size = 64) # Using recipe library(recipes) ames_rec <- recipe(Sale_Price ~ Bldg_Type + Neighborhood + Year_Built + Gr_Liv_Area + Full_Bath + Year_Sold + Lot_Area + Central_Air + Longitude + Latitude, data = ames_train) %>% # Transform some highly skewed predictors step_BoxCox(Lot_Area, Gr_Liv_Area) %>% # Lump some rarely occurring categories into "other" step_other(Neighborhood, threshold = 0.05) %>% # Encode categorical predictors as binary. step_dummy(all_nominal_predictors(), one_hot = TRUE) %>% # Add an interaction effect: step_interact(~ starts_with("Central_Air"):Year_Built) %>% step_zv(all_predictors()) %>% step_normalize(all_numeric_predictors()) set.seed(2) fit <- brulee_linear_reg(ames_rec, data = ames_train, epochs = 5, batch_size = 32) fit autoplot(fit) library(ggplot2) predict(fit, ames_test) %>% bind_cols(ames_test) %>% ggplot(aes(x = .pred, y = Sale_Price)) + geom_abline(col = "green") + geom_point(alpha = .3) + lims(x = c(4, 6), y = c(4, 6)) + coord_fixed(ratio = 1) library(yardstick) predict(fit, ames_test) %>% bind_cols(ames_test) %>% rmse(Sale_Price, .pred) }
brulee_logistic_reg()
fits a model.
brulee_logistic_reg(x, ...) ## Default S3 method: brulee_logistic_reg(x, ...) ## S3 method for class 'data.frame' brulee_logistic_reg( x, y, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'matrix' brulee_logistic_reg( x, y, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'formula' brulee_logistic_reg( formula, data, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'recipe' brulee_logistic_reg( x, data, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... )
brulee_logistic_reg(x, ...) ## Default S3 method: brulee_logistic_reg(x, ...) ## S3 method for class 'data.frame' brulee_logistic_reg( x, y, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'matrix' brulee_logistic_reg( x, y, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'formula' brulee_logistic_reg( formula, data, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'recipe' brulee_logistic_reg( x, data, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... )
x |
Depending on the context:
The predictor data should be standardized (e.g. centered or scaled). |
... |
Options to pass to the learning rate schedulers via
|
y |
When
|
epochs |
An integer for the number of epochs of training. |
penalty |
The amount of weight decay (i.e., L2 regularization). |
mixture |
Proportion of Lasso Penalty (type: double, default: 0.0). A value of mixture = 1 corresponds to a pure lasso model, while mixture = 0 indicates ridge regression (a.k.a weight decay). |
validation |
The proportion of the data randomly assigned to a validation set. |
optimizer |
The method used in the optimization procedure. Possible choices are 'LBFGS' and 'SGD'. Default is 'LBFGS'. |
learn_rate |
A positive number that controls the rapidity that the model
moves along the descent path. Values around 0.1 or less are typical.
( |
momentum |
A positive number usually on |
batch_size |
An integer for the number of training set points in each
batch. ( |
class_weights |
Numeric class weights (classification only). The value can be:
|
stop_iter |
A non-negative integer for how many iterations with no improvement before stopping. |
verbose |
A logical that prints out the iteration history. |
formula |
A formula specifying the outcome term(s) on the left-hand side, and the predictor term(s) on the right-hand side. |
data |
When a recipe or formula is used,
|
This function fits a linear combination of coefficients and predictors to model the log odds of the classes. The training process optimizes the cross-entropy loss function (a.k.a Bernoulli loss).
By default, training halts when the validation loss increases for at least
step_iter
iterations. If validation = 0
the training set loss is used.
The predictors data should all be numeric and encoded in the same units (e.g. standardized to the same range or distribution). If there are factor predictors, use a recipe or formula to create indicator variables (or some other method) to make them numeric. Predictors should be in the same units before training.
The model objects are saved for each epoch so that the number of epochs can
be efficiently tuned. Both the coef()
and predict()
methods for this
model have an epoch
argument (which defaults to the epoch with the best
loss value).
The use of the L1 penalty (a.k.a. the lasso penalty) does not force parameters to be strictly zero (as it does in packages such as glmnet). The zeroing out of parameters is a specific feature the optimization method used in those packages.
A brulee_logistic_reg
object with elements:
models_obj
: a serialized raw vector for the torch module.
estimates
: a list of matrices with the model parameter estimates per
epoch.
best_epoch
: an integer for the epoch with the smallest loss.
loss
: A vector of loss values (MSE for regression, negative log-
likelihood for classification) at each epoch.
dim
: A list of data dimensions.
parameters
: A list of some tuning parameter values.
blueprint
: The hardhat
blueprint data.
predict.brulee_logistic_reg()
, coef.brulee_logistic_reg()
,
autoplot.brulee_logistic_reg()
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "yardstick", "modeldata"))) { library(recipes) library(yardstick) ## ----------------------------------------------------------------------------- # increase # epochs to get better results data(cells, package = "modeldata") cells$case <- NULL set.seed(122) in_train <- sample(1:nrow(cells), 1000) cells_train <- cells[ in_train,] cells_test <- cells[-in_train,] # Using matrices set.seed(1) brulee_logistic_reg(x = as.matrix(cells_train[, c("fiber_width_ch_1", "width_ch_1")]), y = cells_train$class, penalty = 0.10, epochs = 3) # Using recipe library(recipes) cells_rec <- recipe(class ~ ., data = cells_train) %>% # Transform some highly skewed predictors step_YeoJohnson(all_numeric_predictors()) %>% step_normalize(all_numeric_predictors()) %>% step_pca(all_numeric_predictors(), num_comp = 10) set.seed(2) fit <- brulee_logistic_reg(cells_rec, data = cells_train, penalty = .01, epochs = 5) fit autoplot(fit) library(yardstick) predict(fit, cells_test, type = "prob") %>% bind_cols(cells_test) %>% roc_auc(class, .pred_PS) }
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "yardstick", "modeldata"))) { library(recipes) library(yardstick) ## ----------------------------------------------------------------------------- # increase # epochs to get better results data(cells, package = "modeldata") cells$case <- NULL set.seed(122) in_train <- sample(1:nrow(cells), 1000) cells_train <- cells[ in_train,] cells_test <- cells[-in_train,] # Using matrices set.seed(1) brulee_logistic_reg(x = as.matrix(cells_train[, c("fiber_width_ch_1", "width_ch_1")]), y = cells_train$class, penalty = 0.10, epochs = 3) # Using recipe library(recipes) cells_rec <- recipe(class ~ ., data = cells_train) %>% # Transform some highly skewed predictors step_YeoJohnson(all_numeric_predictors()) %>% step_normalize(all_numeric_predictors()) %>% step_pca(all_numeric_predictors(), num_comp = 10) set.seed(2) fit <- brulee_logistic_reg(cells_rec, data = cells_train, penalty = .01, epochs = 5) fit autoplot(fit) library(yardstick) predict(fit, cells_test, type = "prob") %>% bind_cols(cells_test) %>% roc_auc(class, .pred_PS) }
brulee_mlp()
fits neural network models using stochastic gradient
descent. Multiple layers can be used. For working with two-layer networks in
tidymodels, brulee_mlp_two_layer()
can be helpful for specifying tuning
parameters as scalars.
brulee_mlp(x, ...) ## Default S3 method: brulee_mlp(x, ...) ## S3 method for class 'data.frame' brulee_mlp( x, y, epochs = 100L, hidden_units = 3L, activation = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'matrix' brulee_mlp( x, y, epochs = 100L, hidden_units = 3L, activation = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'formula' brulee_mlp( formula, data, epochs = 100L, hidden_units = 3L, activation = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'recipe' brulee_mlp( x, data, epochs = 100L, hidden_units = 3L, activation = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) brulee_mlp_two_layer(x, ...) ## Default S3 method: brulee_mlp_two_layer(x, ...) ## S3 method for class 'data.frame' brulee_mlp_two_layer( x, y, epochs = 100L, hidden_units = 3L, hidden_units_2 = 3L, activation = "relu", activation_2 = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'matrix' brulee_mlp_two_layer( x, y, epochs = 100L, hidden_units = 3L, hidden_units_2 = 3L, activation = "relu", activation_2 = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'formula' brulee_mlp_two_layer( formula, data, epochs = 100L, hidden_units = 3L, hidden_units_2 = 3L, activation = "relu", activation_2 = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'recipe' brulee_mlp_two_layer( x, data, epochs = 100L, hidden_units = 3L, hidden_units_2 = 3L, activation = "relu", activation_2 = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... )
brulee_mlp(x, ...) ## Default S3 method: brulee_mlp(x, ...) ## S3 method for class 'data.frame' brulee_mlp( x, y, epochs = 100L, hidden_units = 3L, activation = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'matrix' brulee_mlp( x, y, epochs = 100L, hidden_units = 3L, activation = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'formula' brulee_mlp( formula, data, epochs = 100L, hidden_units = 3L, activation = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'recipe' brulee_mlp( x, data, epochs = 100L, hidden_units = 3L, activation = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) brulee_mlp_two_layer(x, ...) ## Default S3 method: brulee_mlp_two_layer(x, ...) ## S3 method for class 'data.frame' brulee_mlp_two_layer( x, y, epochs = 100L, hidden_units = 3L, hidden_units_2 = 3L, activation = "relu", activation_2 = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'matrix' brulee_mlp_two_layer( x, y, epochs = 100L, hidden_units = 3L, hidden_units_2 = 3L, activation = "relu", activation_2 = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'formula' brulee_mlp_two_layer( formula, data, epochs = 100L, hidden_units = 3L, hidden_units_2 = 3L, activation = "relu", activation_2 = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'recipe' brulee_mlp_two_layer( x, data, epochs = 100L, hidden_units = 3L, hidden_units_2 = 3L, activation = "relu", activation_2 = "relu", penalty = 0.001, mixture = 0, dropout = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 0.01, rate_schedule = "none", momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... )
x |
Depending on the context:
The predictor data should be standardized (e.g. centered or scaled). |
... |
Options to pass to the learning rate schedulers via
|
y |
When
|
epochs |
An integer for the number of epochs of training. |
An integer for the number of hidden units, or a vector
of integers. If a vector of integers, the model will have |
|
activation |
A character vector for the activation function (such as
"relu", "tanh", "sigmoid", and so on). See |
penalty |
The amount of weight decay (i.e., L2 regularization). |
mixture |
Proportion of Lasso Penalty (type: double, default: 0.0). A value of mixture = 1 corresponds to a pure lasso model, while mixture = 0 indicates ridge regression (a.k.a weight decay). |
dropout |
The proportion of parameters set to zero. |
validation |
The proportion of the data randomly assigned to a validation set. |
optimizer |
The method used in the optimization procedure. Possible choices are 'LBFGS' and 'SGD'. Default is 'LBFGS'. |
learn_rate |
A positive number that controls the initial rapidity that the model moves along the descent path. Values around 0.1 or less are typical. |
rate_schedule |
A single character value for how the learning rate
should change as the optimization proceeds. Possible values are
|
momentum |
A positive number usually on |
batch_size |
An integer for the number of training set points in each
batch. ( |
class_weights |
Numeric class weights (classification only). The value can be:
|
stop_iter |
A non-negative integer for how many iterations with no improvement before stopping. |
verbose |
A logical that prints out the iteration history. |
formula |
A formula specifying the outcome term(s) on the left-hand side, and the predictor term(s) on the right-hand side. |
data |
When a recipe or formula is used,
|
An integer for the number of hidden units for a second layer. |
|
activation_2 |
A character vector for the activation function for a second layer. |
This function fits feed-forward neural network models for regression (when the outcome is a number) or classification (a factor). For regression, the mean squared error is optimized and cross-entropy is the loss function for classification.
When the outcome is a number, the function internally standardizes the outcome data to have mean zero and a standard deviation of one. The prediction function creates predictions on the original scale.
By default, training halts when the validation loss increases for at least
step_iter
iterations. If validation = 0
the training set loss is used.
The predictors data should all be numeric and encoded in the same units (e.g. standardized to the same range or distribution). If there are factor predictors, use a recipe or formula to create indicator variables (or some other method) to make them numeric. Predictors should be in the same units before training.
The model objects are saved for each epoch so that the number of epochs can
be efficiently tuned. Both the coef()
and predict()
methods for this
model have an epoch
argument (which defaults to the epoch with the best
loss value).
The use of the L1 penalty (a.k.a. the lasso penalty) does not force parameters to be strictly zero (as it does in packages such as glmnet). The zeroing out of parameters is a specific feature the optimization method used in those packages.
The learning rate can be set to constant (the default) or dynamically set
via a learning rate scheduler (via the rate_schedule
). Using
rate_schedule = 'none'
uses the learn_rate
argument. Otherwise, any
arguments to the schedulers can be passed via ...
.
A brulee_mlp
object with elements:
models_obj
: a serialized raw vector for the torch module.
estimates
: a list of matrices with the model parameter estimates per
epoch.
best_epoch
: an integer for the epoch with the smallest loss.
loss
: A vector of loss values (MSE for regression, negative log-
likelihood for classification) at each epoch.
dim
: A list of data dimensions.
y_stats
: A list of summary statistics for numeric outcomes.
parameters
: A list of some tuning parameter values.
blueprint
: The hardhat
blueprint data.
predict.brulee_mlp()
, coef.brulee_mlp()
, autoplot.brulee_mlp()
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "yardstick", "modeldata"))) { ## ----------------------------------------------------------------------------- # regression examples (increase # epochs to get better results) data(ames, package = "modeldata") ames$Sale_Price <- log10(ames$Sale_Price) set.seed(122) in_train <- sample(1:nrow(ames), 2000) ames_train <- ames[ in_train,] ames_test <- ames[-in_train,] # Using matrices set.seed(1) fit <- brulee_mlp(x = as.matrix(ames_train[, c("Longitude", "Latitude")]), y = ames_train$Sale_Price, penalty = 0.10) # Using recipe library(recipes) ames_rec <- recipe(Sale_Price ~ Bldg_Type + Neighborhood + Year_Built + Gr_Liv_Area + Full_Bath + Year_Sold + Lot_Area + Central_Air + Longitude + Latitude, data = ames_train) %>% # Transform some highly skewed predictors step_BoxCox(Lot_Area, Gr_Liv_Area) %>% # Lump some rarely occurring categories into "other" step_other(Neighborhood, threshold = 0.05) %>% # Encode categorical predictors as binary. step_dummy(all_nominal_predictors(), one_hot = TRUE) %>% # Add an interaction effect: step_interact(~ starts_with("Central_Air"):Year_Built) %>% step_zv(all_predictors()) %>% step_normalize(all_numeric_predictors()) set.seed(2) fit <- brulee_mlp(ames_rec, data = ames_train, hidden_units = 20, dropout = 0.05, rate_schedule = "cyclic", step_size = 4) fit autoplot(fit) library(ggplot2) predict(fit, ames_test) %>% bind_cols(ames_test) %>% ggplot(aes(x = .pred, y = Sale_Price)) + geom_abline(col = "green") + geom_point(alpha = .3) + lims(x = c(4, 6), y = c(4, 6)) + coord_fixed(ratio = 1) library(yardstick) predict(fit, ames_test) %>% bind_cols(ames_test) %>% rmse(Sale_Price, .pred) # Using multiple hidden layers and activation functions set.seed(2) hidden_fit <- brulee_mlp(ames_rec, data = ames_train, hidden_units = c(15L, 17L), activation = c("relu", "elu"), dropout = 0.05, rate_schedule = "cyclic", step_size = 4) predict(hidden_fit, ames_test) %>% bind_cols(ames_test) %>% rmse(Sale_Price, .pred) # ------------------------------------------------------------------------------ # classification library(dplyr) library(ggplot2) data("parabolic", package = "modeldata") set.seed(1) in_train <- sample(1:nrow(parabolic), 300) parabolic_tr <- parabolic[ in_train,] parabolic_te <- parabolic[-in_train,] set.seed(2) cls_fit <- brulee_mlp(class ~ ., data = parabolic_tr, hidden_units = 2, epochs = 200L, learn_rate = 0.1, activation = "elu", penalty = 0.1, batch_size = 2^8, optimizer = "SGD") autoplot(cls_fit) grid_points <- seq(-4, 4, length.out = 100) grid <- expand.grid(X1 = grid_points, X2 = grid_points) predict(cls_fit, grid, type = "prob") %>% bind_cols(grid) %>% ggplot(aes(X1, X2)) + geom_contour(aes(z = .pred_Class1), breaks = 1/2, col = "black") + geom_point(data = parabolic_te, aes(col = class)) }
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "yardstick", "modeldata"))) { ## ----------------------------------------------------------------------------- # regression examples (increase # epochs to get better results) data(ames, package = "modeldata") ames$Sale_Price <- log10(ames$Sale_Price) set.seed(122) in_train <- sample(1:nrow(ames), 2000) ames_train <- ames[ in_train,] ames_test <- ames[-in_train,] # Using matrices set.seed(1) fit <- brulee_mlp(x = as.matrix(ames_train[, c("Longitude", "Latitude")]), y = ames_train$Sale_Price, penalty = 0.10) # Using recipe library(recipes) ames_rec <- recipe(Sale_Price ~ Bldg_Type + Neighborhood + Year_Built + Gr_Liv_Area + Full_Bath + Year_Sold + Lot_Area + Central_Air + Longitude + Latitude, data = ames_train) %>% # Transform some highly skewed predictors step_BoxCox(Lot_Area, Gr_Liv_Area) %>% # Lump some rarely occurring categories into "other" step_other(Neighborhood, threshold = 0.05) %>% # Encode categorical predictors as binary. step_dummy(all_nominal_predictors(), one_hot = TRUE) %>% # Add an interaction effect: step_interact(~ starts_with("Central_Air"):Year_Built) %>% step_zv(all_predictors()) %>% step_normalize(all_numeric_predictors()) set.seed(2) fit <- brulee_mlp(ames_rec, data = ames_train, hidden_units = 20, dropout = 0.05, rate_schedule = "cyclic", step_size = 4) fit autoplot(fit) library(ggplot2) predict(fit, ames_test) %>% bind_cols(ames_test) %>% ggplot(aes(x = .pred, y = Sale_Price)) + geom_abline(col = "green") + geom_point(alpha = .3) + lims(x = c(4, 6), y = c(4, 6)) + coord_fixed(ratio = 1) library(yardstick) predict(fit, ames_test) %>% bind_cols(ames_test) %>% rmse(Sale_Price, .pred) # Using multiple hidden layers and activation functions set.seed(2) hidden_fit <- brulee_mlp(ames_rec, data = ames_train, hidden_units = c(15L, 17L), activation = c("relu", "elu"), dropout = 0.05, rate_schedule = "cyclic", step_size = 4) predict(hidden_fit, ames_test) %>% bind_cols(ames_test) %>% rmse(Sale_Price, .pred) # ------------------------------------------------------------------------------ # classification library(dplyr) library(ggplot2) data("parabolic", package = "modeldata") set.seed(1) in_train <- sample(1:nrow(parabolic), 300) parabolic_tr <- parabolic[ in_train,] parabolic_te <- parabolic[-in_train,] set.seed(2) cls_fit <- brulee_mlp(class ~ ., data = parabolic_tr, hidden_units = 2, epochs = 200L, learn_rate = 0.1, activation = "elu", penalty = 0.1, batch_size = 2^8, optimizer = "SGD") autoplot(cls_fit) grid_points <- seq(-4, 4, length.out = 100) grid <- expand.grid(X1 = grid_points, X2 = grid_points) predict(cls_fit, grid, type = "prob") %>% bind_cols(grid) %>% ggplot(aes(X1, X2)) + geom_contour(aes(z = .pred_Class1), breaks = 1/2, col = "black") + geom_point(data = parabolic_te, aes(col = class)) }
brulee_multinomial_reg()
fits a model.
brulee_multinomial_reg(x, ...) ## Default S3 method: brulee_multinomial_reg(x, ...) ## S3 method for class 'data.frame' brulee_multinomial_reg( x, y, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'matrix' brulee_multinomial_reg( x, y, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'formula' brulee_multinomial_reg( formula, data, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'recipe' brulee_multinomial_reg( x, data, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... )
brulee_multinomial_reg(x, ...) ## Default S3 method: brulee_multinomial_reg(x, ...) ## S3 method for class 'data.frame' brulee_multinomial_reg( x, y, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'matrix' brulee_multinomial_reg( x, y, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'formula' brulee_multinomial_reg( formula, data, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... ) ## S3 method for class 'recipe' brulee_multinomial_reg( x, data, epochs = 20L, penalty = 0.001, mixture = 0, validation = 0.1, optimizer = "LBFGS", learn_rate = 1, momentum = 0, batch_size = NULL, class_weights = NULL, stop_iter = 5, verbose = FALSE, ... )
x |
Depending on the context:
The predictor data should be standardized (e.g. centered or scaled). |
... |
Options to pass to the learning rate schedulers via
|
y |
When
|
epochs |
An integer for the number of epochs of training. |
penalty |
The amount of weight decay (i.e., L2 regularization). |
mixture |
Proportion of Lasso Penalty (type: double, default: 0.0). A value of mixture = 1 corresponds to a pure lasso model, while mixture = 0 indicates ridge regression (a.k.a weight decay). |
validation |
The proportion of the data randomly assigned to a validation set. |
optimizer |
The method used in the optimization procedure. Possible choices are 'LBFGS' and 'SGD'. Default is 'LBFGS'. |
learn_rate |
A positive number that controls the rapidity that the model
moves along the descent path. Values around 0.1 or less are typical.
( |
momentum |
A positive number usually on |
batch_size |
An integer for the number of training set points in each
batch. ( |
class_weights |
Numeric class weights (classification only). The value can be:
|
stop_iter |
A non-negative integer for how many iterations with no improvement before stopping. |
verbose |
A logical that prints out the iteration history. |
formula |
A formula specifying the outcome term(s) on the left-hand side, and the predictor term(s) on the right-hand side. |
data |
When a recipe or formula is used,
|
This function fits a linear combination of coefficients and predictors to model the log of the class probabilities. The training process optimizes the cross-entropy loss function.
By default, training halts when the validation loss increases for at least
step_iter
iterations. If validation = 0
the training set loss is used.
The predictors data should all be numeric and encoded in the same units (e.g. standardized to the same range or distribution). If there are factor predictors, use a recipe or formula to create indicator variables (or some other method) to make them numeric. Predictors should be in the same units before training.
The model objects are saved for each epoch so that the number of epochs can
be efficiently tuned. Both the coef()
and predict()
methods for this
model have an epoch
argument (which defaults to the epoch with the best
loss value).
The use of the L1 penalty (a.k.a. the lasso penalty) does not force parameters to be strictly zero (as it does in packages such as glmnet). The zeroing out of parameters is a specific feature the optimization method used in those packages.
A brulee_multinomial_reg
object with elements:
models_obj
: a serialized raw vector for the torch module.
estimates
: a list of matrices with the model parameter estimates per
epoch.
best_epoch
: an integer for the epoch with the smallest loss.
loss
: A vector of loss values (MSE for regression, negative log-
likelihood for classification) at each epoch.
dim
: A list of data dimensions.
parameters
: A list of some tuning parameter values.
blueprint
: The hardhat
blueprint data.
predict.brulee_multinomial_reg()
, coef.brulee_multinomial_reg()
,
autoplot.brulee_multinomial_reg()
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "yardstick", "modeldata"))) { library(recipes) library(yardstick) data(penguins, package = "modeldata") penguins <- penguins %>% na.omit() set.seed(122) in_train <- sample(1:nrow(penguins), 200) penguins_train <- penguins[ in_train,] penguins_test <- penguins[-in_train,] rec <- recipe(island ~ ., data = penguins_train) %>% step_dummy(species, sex) %>% step_normalize(all_predictors()) set.seed(3) fit <- brulee_multinomial_reg(rec, data = penguins_train, epochs = 5) fit predict(fit, penguins_test) %>% bind_cols(penguins_test) %>% conf_mat(island, .pred_class) }
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "yardstick", "modeldata"))) { library(recipes) library(yardstick) data(penguins, package = "modeldata") penguins <- penguins %>% na.omit() set.seed(122) in_train <- sample(1:nrow(penguins), 200) penguins_train <- penguins[ in_train,] penguins_test <- penguins[-in_train,] rec <- recipe(island ~ ., data = penguins_train) %>% step_dummy(species, sex) %>% step_normalize(all_predictors()) set.seed(3) fit <- brulee_multinomial_reg(rec, data = penguins_train, epochs = 5) fit predict(fit, penguins_test) %>% bind_cols(penguins_test) %>% conf_mat(island, .pred_class) }
Plot model loss over epochs
## S3 method for class 'brulee_mlp' autoplot(object, ...) ## S3 method for class 'brulee_logistic_reg' autoplot(object, ...) ## S3 method for class 'brulee_multinomial_reg' autoplot(object, ...) ## S3 method for class 'brulee_linear_reg' autoplot(object, ...)
## S3 method for class 'brulee_mlp' autoplot(object, ...) ## S3 method for class 'brulee_logistic_reg' autoplot(object, ...) ## S3 method for class 'brulee_multinomial_reg' autoplot(object, ...) ## S3 method for class 'brulee_linear_reg' autoplot(object, ...)
object |
A |
... |
Not currently used |
This function plots the loss function across the available epochs. A vertical line shows the epoch with the best loss value.
A ggplot
object.
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "yardstick", "modeldata"))) { library(ggplot2) library(recipes) theme_set(theme_bw()) data(ames, package = "modeldata") ames$Sale_Price <- log10(ames$Sale_Price) set.seed(1) in_train <- sample(1:nrow(ames), 2000) ames_train <- ames[ in_train,] ames_test <- ames[-in_train,] ames_rec <- recipe(Sale_Price ~ Longitude + Latitude, data = ames_train) %>% step_normalize(all_numeric_predictors()) set.seed(2) fit <- brulee_mlp(ames_rec, data = ames_train, epochs = 50, batch_size = 32) autoplot(fit) }
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "yardstick", "modeldata"))) { library(ggplot2) library(recipes) theme_set(theme_bw()) data(ames, package = "modeldata") ames$Sale_Price <- log10(ames$Sale_Price) set.seed(1) in_train <- sample(1:nrow(ames), 2000) ames_train <- ames[ in_train,] ames_test <- ames[-in_train,] ames_rec <- recipe(Sale_Price ~ Longitude + Latitude, data = ames_train) %>% step_normalize(all_numeric_predictors()) set.seed(2) fit <- brulee_mlp(ames_rec, data = ames_train, epochs = 50, batch_size = 32) autoplot(fit) }
Extract Model Coefficients
## S3 method for class 'brulee_logistic_reg' coef(object, epoch = NULL, ...) ## S3 method for class 'brulee_linear_reg' coef(object, epoch = NULL, ...) ## S3 method for class 'brulee_mlp' coef(object, epoch = NULL, ...) ## S3 method for class 'brulee_multinomial_reg' coef(object, epoch = NULL, ...)
## S3 method for class 'brulee_logistic_reg' coef(object, epoch = NULL, ...) ## S3 method for class 'brulee_linear_reg' coef(object, epoch = NULL, ...) ## S3 method for class 'brulee_mlp' coef(object, epoch = NULL, ...) ## S3 method for class 'brulee_multinomial_reg' coef(object, epoch = NULL, ...)
object |
A model fit from brulee. |
epoch |
A single integer for the training iteration. If left |
... |
Not currently used. |
For logistic/linear regression, a named vector. For neural networks, a list of arrays.
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "modeldata"))) { data(ames, package = "modeldata") ames$Sale_Price <- log10(ames$Sale_Price) set.seed(1) in_train <- sample(1:nrow(ames), 2000) ames_train <- ames[ in_train,] ames_test <- ames[-in_train,] # Using recipe library(recipes) ames_rec <- recipe(Sale_Price ~ Longitude + Latitude, data = ames_train) %>% step_normalize(all_numeric_predictors()) set.seed(2) fit <- brulee_linear_reg(ames_rec, data = ames_train, epochs = 50, batch_size = 32) coef(fit) coef(fit, epoch = 1) }
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "modeldata"))) { data(ames, package = "modeldata") ames$Sale_Price <- log10(ames$Sale_Price) set.seed(1) in_train <- sample(1:nrow(ames), 2000) ames_train <- ames[ in_train,] ames_test <- ames[-in_train,] # Using recipe library(recipes) ames_rec <- recipe(Sale_Price ~ Longitude + Latitude, data = ames_train) %>% step_normalize(all_numeric_predictors()) set.seed(2) fit <- brulee_linear_reg(ames_rec, data = ames_train, epochs = 50, batch_size = 32) coef(fit) coef(fit, epoch = 1) }
For an x/y interface, matrix_to_dataset()
converts the data to proper
encodings then formats the results for consumption by torch
.
matrix_to_dataset(x, y)
matrix_to_dataset(x, y)
x |
A numeric matrix of predictors. |
y |
A vector. If regression than |
Missing values should be removed before passing data to this function.
An R6 index sampler object with classes "training_set", "dataset", and "R6".
if (torch::torch_is_installed()) { matrix_to_dataset(as.matrix(mtcars[, -1]), mtcars$mpg) }
if (torch::torch_is_installed()) { matrix_to_dataset(as.matrix(mtcars[, -1]), mtcars$mpg) }
brulee_linear_reg
Predict from a brulee_linear_reg
## S3 method for class 'brulee_linear_reg' predict(object, new_data, type = NULL, epoch = NULL, ...)
## S3 method for class 'brulee_linear_reg' predict(object, new_data, type = NULL, epoch = NULL, ...)
object |
A |
new_data |
A data frame or matrix of new predictors. |
type |
A single character. The type of predictions to generate. Valid options are:
|
epoch |
An integer for the epoch to make predictions. If this value
is larger than the maximum number that was fit, a warning is issued and the
parameters from the last epoch are used. If left |
... |
Not used, but required for extensibility. |
A tibble of predictions. The number of rows in the tibble is guaranteed
to be the same as the number of rows in new_data
.
if (torch::torch_is_installed() & rlang::is_installed("recipes")) { data(ames, package = "modeldata") ames$Sale_Price <- log10(ames$Sale_Price) set.seed(1) in_train <- sample(1:nrow(ames), 2000) ames_train <- ames[ in_train,] ames_test <- ames[-in_train,] # Using recipe library(recipes) ames_rec <- recipe(Sale_Price ~ Longitude + Latitude, data = ames_train) %>% step_normalize(all_numeric_predictors()) set.seed(2) fit <- brulee_linear_reg(ames_rec, data = ames_train, epochs = 50, batch_size = 32) predict(fit, ames_test) }
if (torch::torch_is_installed() & rlang::is_installed("recipes")) { data(ames, package = "modeldata") ames$Sale_Price <- log10(ames$Sale_Price) set.seed(1) in_train <- sample(1:nrow(ames), 2000) ames_train <- ames[ in_train,] ames_test <- ames[-in_train,] # Using recipe library(recipes) ames_rec <- recipe(Sale_Price ~ Longitude + Latitude, data = ames_train) %>% step_normalize(all_numeric_predictors()) set.seed(2) fit <- brulee_linear_reg(ames_rec, data = ames_train, epochs = 50, batch_size = 32) predict(fit, ames_test) }
brulee_logistic_reg
Predict from a brulee_logistic_reg
## S3 method for class 'brulee_logistic_reg' predict(object, new_data, type = NULL, epoch = NULL, ...)
## S3 method for class 'brulee_logistic_reg' predict(object, new_data, type = NULL, epoch = NULL, ...)
object |
A |
new_data |
A data frame or matrix of new predictors. |
type |
A single character. The type of predictions to generate. Valid options are:
|
epoch |
An integer for the epoch to make predictions. If this value
is larger than the maximum number that was fit, a warning is issued and the
parameters from the last epoch are used. If left |
... |
Not used, but required for extensibility. |
A tibble of predictions. The number of rows in the tibble is guaranteed
to be the same as the number of rows in new_data
.
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "yardstick", "modeldata"))) { library(recipes) library(yardstick) data(penguins, package = "modeldata") penguins <- penguins %>% na.omit() set.seed(122) in_train <- sample(1:nrow(penguins), 200) penguins_train <- penguins[ in_train,] penguins_test <- penguins[-in_train,] rec <- recipe(sex ~ ., data = penguins_train) %>% step_dummy(all_nominal_predictors()) %>% step_normalize(all_numeric_predictors()) set.seed(3) fit <- brulee_logistic_reg(rec, data = penguins_train, epochs = 5) fit predict(fit, penguins_test) predict(fit, penguins_test, type = "prob") %>% bind_cols(penguins_test) %>% roc_curve(sex, .pred_female) %>% autoplot() }
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "yardstick", "modeldata"))) { library(recipes) library(yardstick) data(penguins, package = "modeldata") penguins <- penguins %>% na.omit() set.seed(122) in_train <- sample(1:nrow(penguins), 200) penguins_train <- penguins[ in_train,] penguins_test <- penguins[-in_train,] rec <- recipe(sex ~ ., data = penguins_train) %>% step_dummy(all_nominal_predictors()) %>% step_normalize(all_numeric_predictors()) set.seed(3) fit <- brulee_logistic_reg(rec, data = penguins_train, epochs = 5) fit predict(fit, penguins_test) predict(fit, penguins_test, type = "prob") %>% bind_cols(penguins_test) %>% roc_curve(sex, .pred_female) %>% autoplot() }
brulee_mlp
Predict from a brulee_mlp
## S3 method for class 'brulee_mlp' predict(object, new_data, type = NULL, epoch = NULL, ...)
## S3 method for class 'brulee_mlp' predict(object, new_data, type = NULL, epoch = NULL, ...)
object |
A |
new_data |
A data frame or matrix of new predictors. |
type |
A single character. The type of predictions to generate. Valid options are:
|
epoch |
An integer for the epoch to make predictions. If this value
is larger than the maximum number that was fit, a warning is issued and the
parameters from the last epoch are used. If left |
... |
Not used, but required for extensibility. |
A tibble of predictions. The number of rows in the tibble is guaranteed
to be the same as the number of rows in new_data
.
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "modeldata"))) { # regression example: data(ames, package = "modeldata") ames$Sale_Price <- log10(ames$Sale_Price) set.seed(1) in_train <- sample(1:nrow(ames), 2000) ames_train <- ames[ in_train,] ames_test <- ames[-in_train,] # Using recipe library(recipes) ames_rec <- recipe(Sale_Price ~ Longitude + Latitude, data = ames_train) %>% step_normalize(all_numeric_predictors()) set.seed(2) fit <- brulee_mlp(ames_rec, data = ames_train, epochs = 50, batch_size = 32) predict(fit, ames_test) }
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "modeldata"))) { # regression example: data(ames, package = "modeldata") ames$Sale_Price <- log10(ames$Sale_Price) set.seed(1) in_train <- sample(1:nrow(ames), 2000) ames_train <- ames[ in_train,] ames_test <- ames[-in_train,] # Using recipe library(recipes) ames_rec <- recipe(Sale_Price ~ Longitude + Latitude, data = ames_train) %>% step_normalize(all_numeric_predictors()) set.seed(2) fit <- brulee_mlp(ames_rec, data = ames_train, epochs = 50, batch_size = 32) predict(fit, ames_test) }
brulee_multinomial_reg
Predict from a brulee_multinomial_reg
## S3 method for class 'brulee_multinomial_reg' predict(object, new_data, type = NULL, epoch = NULL, ...)
## S3 method for class 'brulee_multinomial_reg' predict(object, new_data, type = NULL, epoch = NULL, ...)
object |
A |
new_data |
A data frame or matrix of new predictors. |
type |
A single character. The type of predictions to generate. Valid options are:
|
epoch |
An integer for the epoch to make predictions. If this value
is larger than the maximum number that was fit, a warning is issued and the
parameters from the last epoch are used. If left |
... |
Not used, but required for extensibility. |
A tibble of predictions. The number of rows in the tibble is guaranteed
to be the same as the number of rows in new_data
.
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "yardstick", "modeldata"))) { library(recipes) library(yardstick) data(penguins, package = "modeldata") penguins <- penguins %>% na.omit() set.seed(122) in_train <- sample(1:nrow(penguins), 200) penguins_train <- penguins[ in_train,] penguins_test <- penguins[-in_train,] rec <- recipe(island ~ ., data = penguins_train) %>% step_dummy(species, sex) %>% step_normalize(all_numeric_predictors()) set.seed(3) fit <- brulee_multinomial_reg(rec, data = penguins_train, epochs = 5) fit predict(fit, penguins_test) %>% bind_cols(penguins_test) %>% conf_mat(island, .pred_class) }
if (torch::torch_is_installed() & rlang::is_installed(c("recipes", "yardstick", "modeldata"))) { library(recipes) library(yardstick) data(penguins, package = "modeldata") penguins <- penguins %>% na.omit() set.seed(122) in_train <- sample(1:nrow(penguins), 200) penguins_train <- penguins[ in_train,] penguins_test <- penguins[-in_train,] rec <- recipe(island ~ ., data = penguins_train) %>% step_dummy(species, sex) %>% step_normalize(all_numeric_predictors()) set.seed(3) fit <- brulee_multinomial_reg(rec, data = penguins_train, epochs = 5) fit predict(fit, penguins_test) %>% bind_cols(penguins_test) %>% conf_mat(island, .pred_class) }
Learning rate schedulers alter the learning rate to adjust as training
proceeds. In most cases, the learning rate decreases as epochs increase.
The schedule_*()
functions are individual schedulers and
set_learn_rate()
is a general interface.
schedule_decay_time(epoch, initial = 0.1, decay = 1) schedule_decay_expo(epoch, initial = 0.1, decay = 1) schedule_step(epoch, initial = 0.1, reduction = 1/2, steps = 5) schedule_cyclic(epoch, initial = 0.001, largest = 0.1, step_size = 5) set_learn_rate(epoch, learn_rate, type = "none", ...)
schedule_decay_time(epoch, initial = 0.1, decay = 1) schedule_decay_expo(epoch, initial = 0.1, decay = 1) schedule_step(epoch, initial = 0.1, reduction = 1/2, steps = 5) schedule_cyclic(epoch, initial = 0.001, largest = 0.1, step_size = 5) set_learn_rate(epoch, learn_rate, type = "none", ...)
epoch |
An integer for the number of training epochs (zero being the initial value), |
initial |
A positive numeric value for the starting learning rate. |
decay |
A positive numeric constant for decreasing the rate (see Details below). |
reduction |
A positive numeric constant stating the proportional decrease
in the learning rate occurring at every |
steps |
The number of epochs before the learning rate changes. |
largest |
The maximum learning rate in the cycle. |
step_size |
The half-length of a cycle. |
learn_rate |
A constant learning rate (when no scheduler is used), |
type |
A single character value for the type of scheduler. Possible values are: "decay_time", "decay_expo", "none", "cyclic", and "step". |
... |
Arguments to pass to the individual scheduler functions (e.g.
|
The details for how the schedulers change the rates:
schedule_decay_time()
:
schedule_decay_expo()
:
schedule_step()
:
schedule_cyclic()
: ,
, and
A numeric value for the updated learning rate.
if (rlang::is_installed("purrr")) { library(ggplot2) library(dplyr) library(purrr) iters <- 0:50 bind_rows( tibble(epoch = iters, rate = map_dbl(iters, schedule_decay_time), type = "decay_time"), tibble(epoch = iters, rate = map_dbl(iters, schedule_decay_expo), type = "decay_expo"), tibble(epoch = iters, rate = map_dbl(iters, schedule_step), type = "step"), tibble(epoch = iters, rate = map_dbl(iters, schedule_cyclic), type = "cyclic") ) %>% ggplot(aes(epoch, rate)) + geom_line() + facet_wrap(~ type) }
if (rlang::is_installed("purrr")) { library(ggplot2) library(dplyr) library(purrr) iters <- 0:50 bind_rows( tibble(epoch = iters, rate = map_dbl(iters, schedule_decay_time), type = "decay_time"), tibble(epoch = iters, rate = map_dbl(iters, schedule_decay_expo), type = "decay_expo"), tibble(epoch = iters, rate = map_dbl(iters, schedule_step), type = "step"), tibble(epoch = iters, rate = map_dbl(iters, schedule_cyclic), type = "cyclic") ) %>% ggplot(aes(epoch, rate)) + geom_line() + facet_wrap(~ type) }