Package: yardstick 1.3.1.9000

Emil Hvitfeldt

yardstick: Tidy Characterizations of Model Performance

Tidy tools for quantifying how well model fits to a data set such as confusion matrices, class probability curve summaries, and regression metrics (e.g., RMSE).

Authors:Max Kuhn [aut], Davis Vaughan [aut], Emil Hvitfeldt [aut, cre], Posit Software, PBC [cph, fnd]

yardstick_1.3.1.9000.tar.gz
yardstick_1.3.1.9000.zip(r-4.5)yardstick_1.3.1.9000.zip(r-4.4)yardstick_1.3.1.9000.zip(r-4.3)
yardstick_1.3.1.9000.tgz(r-4.4-x86_64)yardstick_1.3.1.9000.tgz(r-4.4-arm64)yardstick_1.3.1.9000.tgz(r-4.3-x86_64)yardstick_1.3.1.9000.tgz(r-4.3-arm64)
yardstick_1.3.1.9000.tar.gz(r-4.5-noble)yardstick_1.3.1.9000.tar.gz(r-4.4-noble)
yardstick_1.3.1.9000.tgz(r-4.4-emscripten)yardstick_1.3.1.9000.tgz(r-4.3-emscripten)
yardstick.pdf |yardstick.html
yardstick/json (API)
NEWS

# Install 'yardstick' in R:
install.packages('yardstick', repos = c('https://tidymodels.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tidymodels/yardstick/issues

Pkgdown site:https://yardstick.tidymodels.org

Datasets:

On CRAN:

15.40 score 378 stars 55 packages 2.1k scripts 39k downloads 129 exports 18 dependencies

Last updated 2 months agofrom:8ab89037d1. Checks:OK: 7 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 29 2024
R-4.5-win-x86_64NOTENov 29 2024
R-4.5-linux-x86_64NOTENov 29 2024
R-4.4-win-x86_64OKNov 29 2024
R-4.4-mac-x86_64OKNov 29 2024
R-4.4-mac-aarch64OKNov 29 2024
R-4.3-win-x86_64OKNov 29 2024
R-4.3-mac-x86_64OKNov 29 2024
R-4.3-mac-aarch64OKNov 29 2024

Exports:accuracyaccuracy_vecaverage_precisionaverage_precision_vecbal_accuracybal_accuracy_vecbrier_classbrier_class_vecbrier_survivalbrier_survival_integratedbrier_survival_integrated_vecbrier_survival_veccccccc_veccheck_class_metriccheck_dynamic_survival_metriccheck_numeric_metriccheck_prob_metriccheck_static_survival_metricclass_metric_summarizerclassification_costclassification_cost_vecconcordance_survivalconcordance_survival_vecconf_matcurve_metric_summarizercurve_survival_metric_summarizerdemographic_paritydetection_prevalencedetection_prevalence_vecdots_to_estimatedynamic_survival_metric_summarizerequal_opportunityequalized_oddsf_measf_meas_vecfinalize_estimatorfinalize_estimator_internalgain_capturegain_capture_vecgain_curveget_weightshuber_losshuber_loss_pseudohuber_loss_pseudo_vechuber_loss_veciiciic_vecj_indexj_index_veckapkap_veclift_curvemaemae_vecmapemape_vecmasemase_vecmccmcc_vecmetric_setmetric_summarizermetric_tweakmetric_vec_templatemetricsmn_log_lossmn_log_loss_vecmpempe_vecmsdmsd_vecnew_class_metricnew_dynamic_survival_metricnew_groupwise_metricnew_integrated_survival_metricnew_numeric_metricnew_prob_metricnew_static_survival_metricnpvnpv_vecnumeric_metric_summarizerpoisson_log_losspoisson_log_loss_vecppvppv_vecpr_aucpr_auc_vecpr_curveprecisionprecision_vecprob_metric_summarizerrecallrecall_vecrmsermse_vecroc_aucroc_auc_survivalroc_auc_survival_vecroc_auc_vecroc_aunproc_aunp_vecroc_aunuroc_aunu_vecroc_curveroc_curve_survivalrpdrpd_vecrpiqrpiq_vecrsqrsq_tradrsq_trad_vecrsq_vecsenssens_vecsensitivitysensitivity_vecsmapesmape_vecspecspec_vecspecificityspecificity_vecstatic_survival_metric_summarizertidyvalidate_estimatoryardstick_any_missingyardstick_remove_missing

Dependencies:clidplyrfansigenericsgluehardhatlifecyclemagrittrpillarpkgconfigR6rlangsparsevctrstibbletidyselectutf8vctrswithr

Grouping behavior in yardstick

Rendered fromgrouping.Rmdusingknitr::rmarkdownon Nov 29 2024.

Last update: 2023-11-02
Started: 2023-11-02

Metric types

Rendered frommetric-types.Rmdusingknitr::rmarkdownon Nov 29 2024.

Last update: 2024-04-02
Started: 2018-11-01

Multiclass averaging

Rendered frommulticlass.Rmdusingknitr::rmarkdownon Nov 29 2024.

Last update: 2022-11-23
Started: 2018-11-01

Readme and manuals

Help Manual

Help pageTopics
Accuracyaccuracy accuracy.data.frame accuracy_vec
Area under the precision recall curveaverage_precision average_precision.data.frame average_precision_vec
Balanced accuracybal_accuracy bal_accuracy.data.frame bal_accuracy_vec
Brier score for classification modelsbrier_class brier_class.data.frame brier_class_vec
Time-Dependent Brier score for right censored databrier_survival brier_survival.data.frame brier_survival_vec
Integrated Brier score for right censored databrier_survival_integrated brier_survival_integrated.data.frame brier_survival_integrated_vec
Concordance correlation coefficientccc ccc.data.frame ccc_vec
Developer function for checking inputs in new metricscheck_class_metric check_dynamic_survival_metric check_metric check_numeric_metric check_prob_metric check_static_survival_metric
Costs function for poor classificationclassification_cost classification_cost.data.frame classification_cost_vec
Concordance index for right-censored dataconcordance_survival concordance_survival.data.frame concordance_survival_vec
Confusion Matrix for Categorical Dataconf_mat conf_mat.data.frame conf_mat.default conf_mat.table tidy.conf_mat
Demographic paritydemographic_parity
Detection prevalencedetection_prevalence detection_prevalence.data.frame detection_prevalence_vec
Developer helpersdeveloper-helpers dots_to_estimate finalize_estimator finalize_estimator_internal get_weights validate_estimator
Equal opportunityequal_opportunity
Equalized oddsequalized_odds
F Measuref_meas f_meas.data.frame f_meas_vec
Gain capturegain_capture gain_capture.data.frame gain_capture_vec
Gain curvegain_curve gain_curve.data.frame
Multiclass Probability Predictionshpc_cv
Huber losshuber_loss huber_loss.data.frame huber_loss_vec
Psuedo-Huber Losshuber_loss_pseudo huber_loss_pseudo.data.frame huber_loss_pseudo_vec
Index of ideality of correlationiic iic.data.frame iic_vec
J-indexj_index j_index.data.frame j_index_vec
Kappakap kap.data.frame kap_vec
Lift curvelift_curve lift_curve.data.frame
Survival Analysis Resultslung_surv
Mean absolute errormae mae.data.frame mae_vec
Mean absolute percent errormape mape.data.frame mape_vec
Mean absolute scaled errormase mase.data.frame mase_vec
Matthews correlation coefficientmcc mcc.data.frame mcc_vec
Combine metric functionsmetric_set
Tweak a metric functionmetric_tweak
Developer function for summarizing new metricsclass_metric_summarizer curve_metric_summarizer curve_survival_metric_summarizer dynamic_survival_metric_summarizer metric-summarizers numeric_metric_summarizer prob_metric_summarizer static_survival_metric_summarizer
General Function to Estimate Performancemetrics metrics.data.frame
Mean log loss for multinomial datamn_log_loss mn_log_loss.data.frame mn_log_loss_vec
Mean percentage errormpe mpe.data.frame mpe_vec
Mean signed deviationmsd msd.data.frame msd_vec
Create groupwise metricsnew_groupwise_metric
Construct a new metric functionnew-metric new_class_metric new_dynamic_survival_metric new_integrated_survival_metric new_numeric_metric new_prob_metric new_static_survival_metric
Negative predictive valuenpv npv.data.frame npv_vec
Liver Pathology Datapathology
Mean log loss for Poisson datapoisson_log_loss poisson_log_loss.data.frame poisson_log_loss_vec
Positive predictive valueppv ppv.data.frame ppv_vec
Area under the precision recall curvepr_auc pr_auc.data.frame pr_auc_vec
Precision recall curvepr_curve pr_curve.data.frame
Precisionprecision precision.data.frame precision_vec
Recallrecall recall.data.frame recall_vec
Root mean squared errorrmse rmse.data.frame rmse_vec
Area under the receiver operator curveroc_auc roc_auc.data.frame roc_auc_vec
Time-Dependent ROC AUC for Censored Dataroc_auc_survival roc_auc_survival.data.frame roc_auc_survival_vec
Area under the ROC curve of each class against the rest, using the a priori class distributionroc_aunp roc_aunp.data.frame roc_aunp_vec
Area under the ROC curve of each class against the rest, using the uniform class distributionroc_aunu roc_aunu.data.frame roc_aunu_vec
Receiver operator curveroc_curve roc_curve.data.frame
Time-Dependent ROC surve for Censored Dataroc_curve_survival roc_curve_survival.data.frame
Ratio of performance to deviationrpd rpd.data.frame rpd_vec
Ratio of performance to inter-quartilerpiq rpiq.data.frame rpiq_vec
R squaredrsq rsq.data.frame rsq_vec
R squared - traditionalrsq_trad rsq_trad.data.frame rsq_trad_vec
Sensitivitysens sens.data.frame sensitivity sensitivity.data.frame sensitivity_vec sens_vec
Symmetric mean absolute percentage errorsmape smape.data.frame smape_vec
Solubility Predictions from MARS Modelsolubility_test
Specificityspec spec.data.frame specificity specificity.data.frame specificity_vec spec_vec
Summary Statistics for Confusion Matricessummary.conf_mat
Two Class Predictionstwo_class_example
Developer function for handling missing values in new metricsyardstick_any_missing yardstick_remove_missing