Package: tidypredict 0.5.1.9000

Emil Hvitfeldt

tidypredict: Run Predictions Inside the Database

It parses a fitted 'R' model object, and returns a formula in 'Tidy Eval' code that calculates the predictions. It works with several databases back-ends because it leverages 'dplyr' and 'dbplyr' for the final 'SQL' translation of the algorithm. It currently supports lm(), glm(), randomForest(), ranger(), earth(), xgb.Booster.complete(), cubist(), and ctree() models.

Authors:Emil Hvitfeldt [aut, cre], Edgar Ruiz [aut], Max Kuhn [aut]

tidypredict_0.5.1.9000.tar.gz
tidypredict_0.5.1.9000.zip(r-4.5)tidypredict_0.5.1.9000.zip(r-4.4)tidypredict_0.5.1.9000.zip(r-4.3)
tidypredict_0.5.1.9000.tgz(r-4.4-any)tidypredict_0.5.1.9000.tgz(r-4.3-any)
tidypredict_0.5.1.9000.tar.gz(r-4.5-noble)tidypredict_0.5.1.9000.tar.gz(r-4.4-noble)
tidypredict_0.5.1.9000.tgz(r-4.4-emscripten)tidypredict_0.5.1.9000.tgz(r-4.3-emscripten)
tidypredict.pdf |tidypredict.html
tidypredict/json (API)
NEWS

# Install 'tidypredict' in R:
install.packages('tidypredict', repos = c('https://tidymodels.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tidymodels/tidypredict/issues

Pkgdown:https://tidypredict.tidymodels.org

On CRAN:

dbplyrdplyrpurrrrlang

11.19 score 259 stars 2 packages 251 scripts 1.4k downloads 12 exports 26 dependencies

Last updated 2 hours agofrom:0dde432120. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 19 2024
R-4.5-winOKDec 19 2024
R-4.5-linuxOKDec 19 2024
R-4.4-winOKDec 19 2024
R-4.4-macOKDec 19 2024
R-4.3-winOKDec 19 2024
R-4.3-macOKDec 19 2024

Exports:.extract_partykit_classprob.extract_xgb_treesacceptable_formulaas_parsed_modelparse_modeltidytidypredict_fittidypredict_intervaltidypredict_sqltidypredict_sql_intervaltidypredict_testtidypredict_to_column

Dependencies:clicpp11dplyrevaluatefansigenericsgluehighrknitrlifecyclemagrittrpillarpkgconfigpurrrR6rlangstringistringrtibbletidyrtidyselectutf8vctrswithrxfunyaml

Create a regression spec - version 2

Rendered fromregression.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2022-05-31
Started: 2019-07-06

Create a tree spec - version 2

Rendered fromtree.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2022-05-31
Started: 2019-07-06

Cubist models

Rendered fromcubist.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2023-10-31
Started: 2019-07-07

Database write-back

Rendered fromsql.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2023-10-31
Started: 2018-01-02

Generalized Linear Regression

Rendered fromglm.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2023-10-31
Started: 2017-12-27

Linear Regression

Rendered fromlm.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2023-10-31
Started: 2017-12-27

MARS models via the earth package

Rendered frommars.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2023-10-31
Started: 2019-07-07

Non-R Models

Rendered fromnon-r.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2022-05-31
Started: 2019-07-12

Random Forest

Rendered fromrf.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2023-10-31
Started: 2019-07-03

Random Forest, using Ranger

Rendered fromranger.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2023-10-31
Started: 2018-02-20

Save and re-load models

Rendered fromsave.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2022-05-31
Started: 2017-12-30

XGBoost models

Rendered fromxgboost.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2023-10-31
Started: 2019-07-07