Package: stacks 1.0.5.9000
stacks: Tidy Model Stacking
Model stacking is an ensemble technique that involves training a model to combine the outputs of many diverse statistical models, and has been shown to improve predictive performance in a variety of settings. 'stacks' implements a grammar for 'tidymodels'-aligned model stacking.
Authors:
stacks_1.0.5.9000.tar.gz
stacks_1.0.5.9000.zip(r-4.5)stacks_1.0.5.9000.zip(r-4.4)stacks_1.0.5.9000.zip(r-4.3)
stacks_1.0.5.9000.tgz(r-4.4-any)stacks_1.0.5.9000.tgz(r-4.3-any)
stacks_1.0.5.9000.tar.gz(r-4.5-noble)stacks_1.0.5.9000.tar.gz(r-4.4-noble)
stacks_1.0.5.9000.tgz(r-4.4-emscripten)stacks_1.0.5.9000.tgz(r-4.3-emscripten)
stacks.pdf |stacks.html✨
stacks/json (API)
NEWS
# Install 'stacks' in R: |
install.packages('stacks', repos = c('https://tidymodels.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/tidymodels/stacks/issues
- class_folds - Example Objects
- class_res_nn - Example Objects
- class_res_rf - Example Objects
- log_res_nn - Example Objects
- log_res_rf - Example Objects
- reg_folds - Example Objects
- reg_res_lr - Example Objects
- reg_res_sp - Example Objects
- reg_res_svm - Example Objects
- tree_frogs - Tree frog embryo hatching data
- tree_frogs_class_test - Example Objects
- tree_frogs_reg_test - Example Objects
Last updated 29 days agofrom:8c72db52f1. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 23 2024 |
R-4.5-win | OK | Oct 23 2024 |
R-4.5-linux | OK | Oct 23 2024 |
R-4.4-win | OK | Oct 23 2024 |
R-4.4-mac | OK | Oct 23 2024 |
R-4.3-win | OK | Oct 23 2024 |
R-4.3-mac | OK | Oct 23 2024 |
Exports:%>%add_candidatesaugmentautoplotaxe_callaxe_call.model_stackaxe_ctrlaxe_ctrl.model_stackaxe_dataaxe_data.model_stackaxe_envaxe_env.model_stackaxe_fittedaxe_fitted.model_stackblend_predictionsbuild_linear_predictorbutchercollect_parameterscontrol_stack_bayescontrol_stack_gridcontrol_stack_resamplesfit_membersget_expressionspredict.data_stackpredict.model_stackprediction_eqnstack_predictstacks
Dependencies:butcherclasscliclockcodetoolscolorspacecpp11crayondata.tablediagramdialsDiceDesigndigestdoFuturedplyrfansifarverforeachfurrrfuturefuture.applygenericsggplot2glmnetglobalsgluegowerGPfitgtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalhslifecyclelistenvlobstrlubridatemagrittrMASSMatrixmgcvmodelenvmunsellnlmennetnumDerivparallellyparsnippillarpkgconfigprettyunitsprodlimprogressrpurrrR6RColorBrewerRcppRcppEigenrecipesrlangrpartrsamplescalessfdshapeslidersparsevctrsSQUAREMstringistringrsurvivaltailortibbletidyrtidyselecttimechangetimeDatetunetzdbutf8vctrsviridisLitewarpwithrworkflowsyardstick
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Add model definitions to a data stack | add_candidates |
Augment a model stack | augment.model_stack |
Plot results of a stacked ensemble model. | autoplot.linear_stack |
Axing a model_stack. | axe_call.model_stack axe_ctrl.model_stack axe_data.model_stack axe_env.model_stack axe_fitted.model_stack axe_model_stack |
Determine stacking coefficients from a data stack | blend_predictions |
Collect candidate parameters and stacking coefficients | collect_parameters collect_parameters.data_stack collect_parameters.default collect_parameters.model_stack |
Control wrappers | control_stack control_stack_bayes control_stack_grid control_stack_resamples |
Example Objects | class_folds class_res_nn class_res_rf example_data log_res_nn log_res_rf reg_folds reg_res_lr reg_res_sp reg_res_svm tree_frogs_class_test tree_frogs_reg_test |
Fit model stack members with non-zero stacking coefficients | fit_members |
Obtain prediction equations for all possible values of type | get_expressions get_expressions._elnet get_expressions._lognet get_expressions._multnet |
Predicting with a model stack | predict.data_stack |
Predicting with a model stack | predict.model_stack |
Initialize a Stack | stacks |
stacks: Tidy Model Stacking | stacks-package stacks_description stacks_package |
Tree frog embryo hatching data | tree_frogs |