Package: shinymodels 0.1.1.9000
shinymodels: Interactive Assessments of Models
Launch a 'shiny' application for 'tidymodels' results. For classification or regression models, the app can be used to determine if there is lack of fit or poorly predicted points.
Authors:
shinymodels_0.1.1.9000.tar.gz
shinymodels_0.1.1.9000.zip(r-4.5)shinymodels_0.1.1.9000.zip(r-4.4)shinymodels_0.1.1.9000.zip(r-4.3)
shinymodels_0.1.1.9000.tgz(r-4.4-any)shinymodels_0.1.1.9000.tgz(r-4.3-any)
shinymodels_0.1.1.9000.tar.gz(r-4.5-noble)shinymodels_0.1.1.9000.tar.gz(r-4.4-noble)
shinymodels_0.1.1.9000.tgz(r-4.4-emscripten)shinymodels_0.1.1.9000.tgz(r-4.3-emscripten)
shinymodels.pdf |shinymodels.html✨
shinymodels/json (API)
NEWS
# Install 'shinymodels' in R: |
install.packages('shinymodels', repos = c('https://tidymodels.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/tidymodels/shinymodels/issues
- ames_mlp_itr - Iterative optimization of neural network
- cars_bag_vfld - Resampled bagged tree results
- cell_race - A CART classification tree tuned via racing
- scat_fda_bt - Tuned flexible discriminant analysis results
- two_class_final - Test set results for logistic regression
Last updated 28 days agofrom:f4e8798bed. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 24 2024 |
R-4.5-win | OK | Oct 24 2024 |
R-4.5-linux | OK | Oct 24 2024 |
R-4.4-win | OK | Oct 24 2024 |
R-4.4-mac | OK | Oct 24 2024 |
R-4.3-win | OK | Oct 24 2024 |
R-4.3-mac | OK | Oct 24 2024 |
Exports:%>%display_selectedexplorefirst_class_prob_namefirst_levelformat_hoverorganize_dataperformance_objectplot_multiclass_conf_matplot_multiclass_obs_predplot_multiclass_prplot_multiclass_pred_factorcolplot_multiclass_pred_numcolplot_multiclass_rocplot_numeric_obs_predplot_numeric_res_factorcolplot_numeric_res_numcolplot_numeric_res_predplot_twoclass_conf_matplot_twoclass_obs_predplot_twoclass_prplot_twoclass_pred_factorcolplot_twoclass_pred_numcolplot_twoclass_rocshiny_models
Dependencies:askpassbase64encbslibcachemclasscliclockcodetoolscolorspacecommonmarkcpp11crayoncrosstalkcurldata.tablediagramdialsDiceDesigndigestdoFuturedplyrDTevaluatefansifarverfastmapfontawesomeforeachfsfurrrfuturefuture.applygenericsggplot2globalsgluegowerGPfitgtablehardhathighrhtmltoolshtmlwidgetshttpuvhttripredisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglaterlatticelavalazyevallhslifecyclelistenvlubridatemagrittrMASSMatrixmemoisemgcvmimemodelenvmunsellnlmennetnumDerivopensslparallellyparsnippillarpkgconfigplotlyprettyunitsprodlimprogressrpromisespurrrR6rappdirsRColorBrewerRcpprecipesrlangrmarkdownrpartrsamplesassscalessfdshapeshinyshinydashboardslidersourcetoolssparsevctrsSQUAREMstringistringrsurvivalsystailortibbletidyrtidyselecttimechangetimeDatetinytextunetzdbutf8vctrsviridisLitewarpwithrworkflowsxfunxtableyamlyardstick
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Iterative optimization of neural network | ames_mlp_itr |
Resampled bagged tree results | cars_bag_vfld |
A CART classification tree tuned via racing | cell_race |
Explore model results | explore.default explore.tune_results |
Tuned flexible discriminant analysis results | scat_fda_bt |
Test set results for logistic regression | two_class_final |