Package: probably 1.0.3.9001

Max Kuhn

probably: Tools for Post-Processing Predicted Values

Models can be improved by post-processing class probabilities, by: recalibration, conversion to hard probabilities, assessment of equivocal zones, and other activities. 'probably' contains tools for conducting these operations as well as calibration tools and conformal inference techniques for regression models.

Authors:Max Kuhn [aut, cre], Davis Vaughan [aut], Edgar Ruiz [aut], Posit Software, PBC [cph, fnd]

probably_1.0.3.9001.tar.gz
probably_1.0.3.9001.zip(r-4.5)probably_1.0.3.9001.zip(r-4.4)probably_1.0.3.9001.zip(r-4.3)
probably_1.0.3.9001.tgz(r-4.4-any)probably_1.0.3.9001.tgz(r-4.3-any)
probably_1.0.3.9001.tar.gz(r-4.5-noble)probably_1.0.3.9001.tar.gz(r-4.4-noble)
probably_1.0.3.9001.tgz(r-4.4-emscripten)probably_1.0.3.9001.tgz(r-4.3-emscripten)
probably.pdf |probably.html
probably/json (API)
NEWS

# Install 'probably' in R:
install.packages('probably', repos = c('https://tidymodels.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tidymodels/probably/issues

Datasets:

On CRAN:

11.64 score 115 stars 21k scripts 2.1k downloads 44 exports 89 dependencies

Last updated 1 months agofrom:369cef329e. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 15 2024
R-4.5-winOKNov 15 2024
R-4.5-linuxOKNov 15 2024
R-4.4-winOKNov 15 2024
R-4.4-macOKNov 15 2024
R-4.3-winOKNov 15 2024
R-4.3-macOKNov 15 2024

Exports:.cal_table_breaks.cal_table_logistic.cal_table_windowedany_equivocalappend_class_predas_class_predas.factoras.orderedaugmentbound_predictioncal_applycal_estimate_betacal_estimate_isotoniccal_estimate_isotonic_bootcal_estimate_linearcal_estimate_logisticcal_estimate_multinomialcal_plot_breakscal_plot_logisticcal_plot_regressioncal_plot_windowedcal_validate_betacal_validate_isotoniccal_validate_isotonic_bootcal_validate_linearcal_validate_logisticcal_validate_multinomialclass_predcollect_metricscollect_predictionscontrol_conformal_fullfitint_conformal_cvint_conformal_fullint_conformal_quantileint_conformal_splitis_class_predis_equivocalmake_class_predmake_two_class_predreportable_raterequired_pkgsthreshold_perfwhich_equivocal

Dependencies:butcherclasscliclockcodetoolscolorspacecpp11crayondata.tablediagramdialsDiceDesigndigestdoFuturedplyrfansifarverforeachfurrrfuturefuture.applygenericsggplot2globalsgluegowerGPfitgtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalhslifecyclelistenvlobstrlubridatemagrittrMASSMatrixmgcvmodelenvmunsellnlmennetnumDerivparallellyparsnippillarpkgconfigprettyunitsprodlimprogressrpurrrR6RColorBrewerRcpprecipesrlangrpartrsamplescalessfdshapeslidersparsevctrsSQUAREMstringistringrsurvivaltailortibbletidyrtidyselecttimechangetimeDatetunetzdbutf8vctrsviridisLitewarpwithrworkflowsyardstick

Equivocal zones

Rendered fromequivocal-zones.Rmdusingknitr::rmarkdownon Nov 15 2024.

Last update: 2023-10-31
Started: 2018-11-19

Where does probably fit in?

Rendered fromwhere-to-use.Rmdusingknitr::rmarkdownon Nov 15 2024.

Last update: 2024-10-16
Started: 2018-11-19

Readme and manuals

Help Manual

Help pageTopics
Add a 'class_pred' columnappend_class_pred
Coerce to a 'class_pred' objectas_class_pred
Boosted regression trees predictionsboosting_predictions boosting_predictions_oob boosting_predictions_test
Truncate a numeric prediction columnbound_prediction
Applies a calibration to a set of existing predictionscal_apply cal_apply.cal_object cal_apply.data.frame cal_apply.tune_results
Uses a Beta calibration model to calculate new probabilitiescal_estimate_beta cal_estimate_beta.data.frame cal_estimate_beta.grouped_df cal_estimate_beta.tune_results
Uses an Isotonic regression model to calibrate model predictions.cal_estimate_isotonic cal_estimate_isotonic.data.frame cal_estimate_isotonic.grouped_df cal_estimate_isotonic.tune_results
Uses a bootstrapped Isotonic regression model to calibrate probabilitiescal_estimate_isotonic_boot cal_estimate_isotonic_boot.data.frame cal_estimate_isotonic_boot.grouped_df cal_estimate_isotonic_boot.tune_results
Uses a linear regression model to calibrate numeric predictionscal_estimate_linear cal_estimate_linear.data.frame cal_estimate_linear.grouped_df cal_estimate_linear.tune_results
Uses a logistic regression model to calibrate probabilitiescal_estimate_logistic cal_estimate_logistic.data.frame cal_estimate_logistic.grouped_df cal_estimate_logistic.tune_results
Uses a Multinomial calibration model to calculate new probabilitiescal_estimate_multinomial cal_estimate_multinomial.data.frame cal_estimate_multinomial.grouped_df cal_estimate_multinomial.tune_results
Probability calibration plots via binningcal_plot_breaks cal_plot_breaks.data.frame cal_plot_breaks.grouped_df cal_plot_breaks.tune_results
Probability calibration plots via logistic regressioncal_plot_logistic cal_plot_logistic.data.frame cal_plot_logistic.grouped_df cal_plot_logistic.tune_results
Regression calibration plotscal_plot_regression cal_plot_regression.data.frame cal_plot_regression.grouped_df cal_plot_regression.tune_results
Probability calibration plots via moving windowscal_plot_windowed cal_plot_windowed.data.frame cal_plot_windowed.grouped_df cal_plot_windowed.tune_results
Measure performance with and without using Beta calibrationcal_validate_beta cal_validate_beta.resample_results cal_validate_beta.rset cal_validate_beta.tune_results
Measure performance with and without using isotonic regression calibrationcal_validate_isotonic cal_validate_isotonic.resample_results cal_validate_isotonic.rset cal_validate_isotonic.tune_results
Measure performance with and without using bagged isotonic regression calibrationcal_validate_isotonic_boot cal_validate_isotonic_boot.resample_results cal_validate_isotonic_boot.rset cal_validate_isotonic_boot.tune_results
Measure performance with and without using linear regression calibrationcal_validate_linear cal_validate_linear.resample_results cal_validate_linear.rset
Measure performance with and without using logistic calibrationcal_validate_logistic cal_validate_logistic.resample_results cal_validate_logistic.rset cal_validate_logistic.tune_results
Measure performance with and without using multinomial calibrationcal_validate_multinomial cal_validate_multinomial.resample_results cal_validate_multinomial.rset cal_validate_multinomial.tune_results
Create a class prediction objectclass_pred
Obtain and format metrics produced by calibration validationcollect_metrics.cal_rset
Obtain and format predictions produced by calibration validationcollect_predictions.cal_rset
Controlling the numeric details for conformal inferencecontrol_conformal_full
Prediction intervals via conformal inference CV+int_conformal_cv int_conformal_cv.default int_conformal_cv.resample_results int_conformal_cv.tune_results
Prediction intervals via conformal inferenceint_conformal_full int_conformal_full.default int_conformal_full.workflow
Prediction intervals via conformal inference and quantile regressionint_conformal_quantile int_conformal_quantile.workflow
Prediction intervals via split conformal inferenceint_conformal_split int_conformal_split.default int_conformal_split.workflow
Test if an object inherits from 'class_pred'is_class_pred
Extract 'class_pred' levelslevels.class_pred
Locate equivocal valuesany_equivocal is_equivocal locate-equivocal which_equivocal
Create a 'class_pred' vector from class probabilitiesmake_class_pred make_two_class_pred
Prediction intervals from conformal methodspredict.int_conformal_cv predict.int_conformal_full predict.int_conformal_quantile predict.int_conformal_split
Calculate the reportable ratereportable_rate
Image segmentation predictionssegment_logistic segment_naive_bayes
Predictions on animal speciesspecies_probs
Generate performance metrics across probability thresholdsthreshold_perf threshold_perf.data.frame