Package: baguette 1.0.2.9000
baguette: Efficient Model Functions for Bagging
Tree- and rule-based models can be bagged (<doi:10.1007/BF00058655>) using this package and their predictions equations are stored in an efficient format to reduce the model objects size and speed.
Authors:
baguette_1.0.2.9000.tar.gz
baguette_1.0.2.9000.zip(r-4.5)baguette_1.0.2.9000.zip(r-4.4)baguette_1.0.2.9000.zip(r-4.3)
baguette_1.0.2.9000.tgz(r-4.4-any)baguette_1.0.2.9000.tgz(r-4.3-any)
baguette_1.0.2.9000.tar.gz(r-4.5-noble)baguette_1.0.2.9000.tar.gz(r-4.4-noble)
baguette_1.0.2.9000.tgz(r-4.4-emscripten)baguette_1.0.2.9000.tgz(r-4.3-emscripten)
baguette.pdf |baguette.html✨
baguette/json (API)
NEWS
# Install 'baguette' in R: |
install.packages('baguette', repos = c('https://tidymodels.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/tidymodels/baguette/issues
Last updated 1 months agofrom:a56bbbfde5. Checks:OK: 1 ERROR: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 14 2024 |
R-4.5-win | ERROR | Nov 14 2024 |
R-4.5-linux | ERROR | Nov 14 2024 |
R-4.4-win | ERROR | Nov 14 2024 |
R-4.4-mac | ERROR | Nov 14 2024 |
R-4.3-win | ERROR | Nov 14 2024 |
R-4.3-mac | ERROR | Nov 14 2024 |
Exports:%>%baggerclass_costcontrol_bagnnet_imp_garsonvar_impvar_imp.bagger
Dependencies:butcherC50clicodetoolscolorspacecpp11crayonCubistdialsDiceDesigndigestdplyrfansifarverFormulafurrrfuturegenericsggplot2globalsgluegtablehardhatinumisobandlabelinglatticelibcoinlifecyclelistenvlobstrmagrittrMASSMatrixmgcvmunsellmvtnormnlmeparallellyparsnippartykitpillarpkgconfigplyrprettyunitspurrrR6RColorBrewerRcppreshape2rlangrpartrsamplescalessfdslidersparsevctrsstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewarpwithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Bagging functions | bagger bagger.data.frame bagger.default bagger.formula bagger.matrix bagger.recipe |
Cost parameter for minority class | class_cost |
Controlling the bagging process | control_bag |
Predictions from a bagged model | predict.bagger |
Obtain variable importance scores | var_imp.bagger |