Package: baguette 1.0.2.9000

Max Kuhn

baguette: Efficient Model Functions for Bagging

Tree- and rule-based models can be bagged (<doi:10.1007/BF00058655>) using this package and their predictions equations are stored in an efficient format to reduce the model objects size and speed.

Authors:Max Kuhn [aut, cre], Posit Software, PBC [cph, fnd]

baguette_1.0.2.9000.tar.gz
baguette_1.0.2.9000.zip(r-4.5)baguette_1.0.2.9000.zip(r-4.4)baguette_1.0.2.9000.zip(r-4.3)
baguette_1.0.2.9000.tgz(r-4.4-any)baguette_1.0.2.9000.tgz(r-4.3-any)
baguette_1.0.2.9000.tar.gz(r-4.5-noble)baguette_1.0.2.9000.tar.gz(r-4.4-noble)
baguette_1.0.2.9000.tgz(r-4.4-emscripten)baguette_1.0.2.9000.tgz(r-4.3-emscripten)
baguette.pdf |baguette.html
baguette/json (API)
NEWS

# Install 'baguette' in R:
install.packages('baguette', repos = c('https://tidymodels.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tidymodels/baguette/issues

On CRAN:

7.53 score 25 stars 566 scripts 922 downloads 7 exports 68 dependencies

Last updated 1 months agofrom:a56bbbfde5. Checks:OK: 1 ERROR: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 14 2024
R-4.5-winERRORNov 14 2024
R-4.5-linuxERRORNov 14 2024
R-4.4-winERRORNov 14 2024
R-4.4-macERRORNov 14 2024
R-4.3-winERRORNov 14 2024
R-4.3-macERRORNov 14 2024

Exports:%>%baggerclass_costcontrol_bagnnet_imp_garsonvar_impvar_imp.bagger

Dependencies:butcherC50clicodetoolscolorspacecpp11crayonCubistdialsDiceDesigndigestdplyrfansifarverFormulafurrrfuturegenericsggplot2globalsgluegtablehardhatinumisobandlabelinglatticelibcoinlifecyclelistenvlobstrmagrittrMASSMatrixmgcvmunsellmvtnormnlmeparallellyparsnippartykitpillarpkgconfigplyrprettyunitspurrrR6RColorBrewerRcppreshape2rlangrpartrsamplescalessfdslidersparsevctrsstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewarpwithr

Readme and manuals

Help Manual

Help pageTopics
Bagging functionsbagger bagger.data.frame bagger.default bagger.formula bagger.matrix bagger.recipe
Cost parameter for minority classclass_cost
Controlling the bagging processcontrol_bag
Predictions from a bagged modelpredict.bagger
Obtain variable importance scoresvar_imp.bagger