Package: applicable 0.0.1.1

Marly Gotti

applicable: A Compilation of Applicability Domain Methods

A modeling package compiling applicability domain methods in R. It combines different methods to measure the amount of extrapolation new samples can have from the training set. See Netzeva et al (2005) <doi:10.1177/026119290503300209> for an overview of applicability domains.

Authors:Marly Gotti [aut, cre], Max Kuhn [aut], Posit Software, PBC [cph, fnd]

applicable_0.0.1.1.tar.gz
applicable_0.0.1.1.zip(r-4.5)applicable_0.0.1.1.zip(r-4.4)applicable_0.0.1.1.zip(r-4.3)
applicable_0.0.1.1.tgz(r-4.4-any)applicable_0.0.1.1.tgz(r-4.3-any)
applicable_0.0.1.1.tar.gz(r-4.5-noble)applicable_0.0.1.1.tar.gz(r-4.4-noble)
applicable_0.0.1.1.tgz(r-4.4-emscripten)applicable_0.0.1.1.tgz(r-4.3-emscripten)
applicable.pdf |applicable.html
applicable/json (API)

# Install 'applicable' in R:
install.packages('applicable', repos = c('https://tidymodels.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tidymodels/applicable/issues

Pkgdown site:https://applicable.tidymodels.org

Datasets:

On CRAN:

7.43 score 47 stars 1 packages 48 scripts 694 downloads 7 exports 41 dependencies

Last updated 2 years agofrom:b0321ecde4. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 16 2024
R-4.5-winOKDec 16 2024
R-4.5-linuxOKDec 16 2024
R-4.4-winOKDec 16 2024
R-4.4-macOKDec 16 2024
R-4.3-winOKDec 16 2024
R-4.3-macOKDec 16 2024

Exports:apd_hat_valuesapd_pcaapd_similarityautoplot.apd_pcaautoplot.apd_similarityscorescore.default

Dependencies:clicolorspacecpp11dplyrfansifarvergenericsggplot2gluegtablehardhatisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigproxyCpurrrR6RColorBrewerRcppRcppArmadillorlangscalessparsevctrsstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr

Applicability domain methods for binary data

Rendered frombinary-data.Rmdusingknitr::rmarkdownon Dec 16 2024.

Last update: 2023-03-13
Started: 2019-08-10

Applicability domain methods for continuous data

Rendered fromcontinuous-data.Rmdusingknitr::rmarkdownon Dec 16 2024.

Last update: 2023-03-13
Started: 2019-08-10

Readme and manuals

Help Manual

Help pageTopics
Recent Ames Iowa Housesames_new
Fit a 'apd_hat_values'apd_hat_values apd_hat_values.data.frame apd_hat_values.default apd_hat_values.formula apd_hat_values.matrix apd_hat_values.recipe
Fit a 'apd_pca'apd_pca apd_pca.data.frame apd_pca.default apd_pca.formula apd_pca.matrix apd_pca.recipe
Applicability domain methods using binary similarity analysisapd_similarity apd_similarity.data.frame apd_similarity.default apd_similarity.formula apd_similarity.matrix apd_similarity.recipe
Plot the distribution function for pcasautoplot.apd_pca
Plot the cumulative distribution function for similarity metricsautoplot.apd_similarity
Binary QSAR Databinary binary_tr binary_unk qsar_binary
OkCupid Binary Predictorsokc_binary okc_binary_test okc_binary_train
Print number of predictors and principal components used.print.apd_hat_values
Print number of predictors and principal components used.print.apd_pca
Print number of predictors and principal components used.print.apd_similarity
A scoring functionscore score.default
Score new samples using hat valuesscore.apd_hat_values
Predict from a 'apd_pca'score.apd_pca
Score new samples using similarity methodsscore.apd_similarity