binomial
family
models. That is akin to running
predict(model, type = "response")
contr.treatment
) are
supported.offset
is supportedwt ~ mpg + am
mutate(mtcars, newam = paste0(am))
and then
wt ~ mpg + newam
wt ~ mpg + as.factor(am)
wt ~ mpg + as.character(am)
tidypredict_interval()
&
tidypredict_sql_interval()
library(tidypredict)
library(dplyr)
df <- mtcars %>%
mutate(char_cyl = paste0("cyl", cyl)) %>%
select(wt, char_cyl, am)
model <- glm(am ~ wt + char_cyl, data = df, family = "binomial")
It returns a SQL query that contains the coefficients
(model$coefficients
) operated against the correct variable
or categorical variable value. In most cases the resulting SQL is one
short CASE WHEN
statement per coefficient. It appends the
offset
field or value, if one is provided.
For binomial
models, the sigmoid
equation is applied. This means that the target SQL database type will
need to support the exponent function.
library(tidypredict)
tidypredict_sql(model, dbplyr::simulate_mssql())
#> <SQL> 1.0 - 1.0 / (1.0 + EXP(((20.8527831345691 + (`wt` * -7.85934263583836)) + (IIF(`char_cyl` = 'cyl6', 1.0, 0.0) * 3.10462643177453)) + (IIF(`char_cyl` = 'cyl8', 1.0, 0.0) * 5.37942092366097)))
Alternatively, use tidypredict_to_column()
if the
results are the be used or previewed in dplyr
.
df %>%
tidypredict_to_column(model) %>%
head(10)
#> wt char_cyl am fit
#> Mazda RX4 2.620 cyl6 1 0.96662269
#> Mazda RX4 Wag 2.875 cyl6 1 0.79605201
#> Datsun 710 2.320 cyl4 1 0.93208127
#> Hornet 4 Drive 3.215 cyl6 0 0.21242376
#> Hornet Sportabout 3.440 cyl8 0 0.30918450
#> Valiant 3.460 cyl6 0 0.03783629
#> Duster 360 3.570 cyl8 0 0.13875740
#> Merc 240D 3.190 cyl4 0 0.01450687
#> Merc 230 3.150 cyl4 0 0.01975984
#> Merc 280 3.440 cyl6 0 0.04399324
The parser reads several parts of the glm
object to
tabulate all of the needed variables. One entry per coefficient is added
to the final table. Other variables are added at the end. Some variables
are not required for every parsed model. For example,
offset
is listed because it’s part of the formula (call) of
the model, if there were no offset in a given model, that line would not
exist.
pm <- parse_model(model)
str(pm, 2)
#> List of 2
#> $ general:List of 7
#> ..$ model : chr "glm"
#> ..$ version : num 2
#> ..$ type : chr "regression"
#> ..$ residual: int 28
#> ..$ family : chr "binomial"
#> ..$ link : chr "logit"
#> ..$ is_glm : num 1
#> $ terms :List of 4
#> ..$ :List of 5
#> ..$ :List of 5
#> ..$ :List of 5
#> ..$ :List of 5
#> - attr(*, "class")= chr [1:3] "parsed_model" "pm_regression" "list"
The output from parse_model()
is transformed into a
dplyr
, a.k.a Tidy Eval, formula. All categorical variables
are operated using if_else()
.
tidypredict_fit(model)
#> 1 - 1/(1 + exp(20.8527831345691 + (wt * -7.85934263583836) +
#> (ifelse(char_cyl == "cyl6", 1, 0) * 3.10462643177453) + (ifelse(char_cyl ==
#> "cyl8", 1, 0) * 5.37942092366097)))
From there, the Tidy Eval formula can be used anywhere where it can
be operated. tidypredict
provides three paths:
dplyr
,
mutate(df, !! tidypredict_fit(model))
tidypredict_to_column(model)
to a piped command
settidypredict_to_sql(model)
to retrieve the SQL
statementThe same applies to the prediction interval functions.
Testing the tidypredict
results is easy. The
tidypredict_test()
function automatically uses the
lm
model object’s data frame, to compare
tidypredict_fit()
, and tidypredict_interval()
to the results given by predict()