--- title: "Supported Models and recipes steps" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Supported Models and recipes steps} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- The supported models currently all come from [tidypredict](https://tidypredict.tidymodels.org/) right now. ## Supported models The following models are supported by `tidypredict`: - Linear Regression - `lm()` - Generalized Linear model - `glm()` - Random Forest models - `randomForest::randomForest()` - Random Forest models, via `ranger` - `ranger::ranger()` - MARS models - `earth::earth()` - XGBoost models - `xgboost::xgb.Booster.complete()` - Cubist models - `Cubist::cubist()` - Tree models, via `partykit` - `partykit::ctree()` ### `parsnip` `tidypredict` supports models fitted via the `parsnip` interface. The ones confirmed currently work in `tidypredict` are: - `lm()` - `parsnip`: `linear_reg()` with *"lm"* as the engine. - `randomForest::randomForest()` - `parsnip`: `rand_forest()` with *"randomForest"* as the engine. - `ranger::ranger()` - `parsnip`: `rand_forest()` with *"ranger"* as the engine. - `earth::earth()` - `parsnip`: `mars()` with *"earth"* as the engine. ## Recipes steps ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(orbital) ``` ```{r} #| echo: false all_funs <- ls(getNamespace("orbital")) steps <- grep("orbital.step_", all_funs, value = TRUE) steps <- gsub("orbital.", "", steps) ``` The following `r length(steps)` recipes steps are supported ```{r, results='asis'} #| echo: false cat(paste0("- `", steps, "()`\n")) ```