Title: | Model Wrappers for Discriminant Analysis |
---|---|
Description: | Bindings for additional classification models for use with the 'parsnip' package. Models include flavors of discriminant analysis, such as linear (Fisher (1936) <doi:10.1111/j.1469-1809.1936.tb02137.x>), regularized (Friedman (1989) <doi:10.1080/01621459.1989.10478752>), and flexible (Hastie, Tibshirani, and Buja (1994) <doi:10.1080/01621459.1994.10476866>), as well as naive Bayes classifiers (Hand and Yu (2007) <doi:10.1111/j.1751-5823.2001.tb00465.x>). |
Authors: | Emil Hvitfeldt [aut, cre] , Max Kuhn [aut] , Posit Software, PBC [cph, fnd] |
Maintainer: | Emil Hvitfeldt <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.0.1.9000 |
Built: | 2024-12-22 05:50:35 UTC |
Source: | https://github.com/tidymodels/discrim |
discrim_regularized()
describes the effect of frac_common_cov()
and
frac_identity()
. smoothness()
is an alias for the adjust
parameter in
stats::density()
.
frac_common_cov(range = c(0, 1), trans = NULL) frac_identity(range = c(0, 1), trans = NULL) smoothness(range = c(0.5, 1.5), trans = NULL)
frac_common_cov(range = c(0, 1), trans = NULL) frac_identity(range = c(0, 1), trans = NULL) smoothness(range = c(0.5, 1.5), trans = NULL)
range |
A two-element vector holding the defaults for the smallest and largest possible values, respectively. |
trans |
A |
These parameters can modulate a RDA model to go between linear and quadratic class boundaries.
A function with classes "quant_param" and "param"
frac_common_cov()
frac_common_cov()
Parabolic class boundary data
These data were simulated. There are two correlated predictors and two classes in the factor outcome.
parabolic |
a data frame |
if (rlang::is_installed("ggplot2")) { data(parabolic) library(ggplot2) ggplot(parabolic, aes(x = X1, y = X2, col = class)) + geom_point(alpha = .5) + theme_bw() }
if (rlang::is_installed("ggplot2")) { data(parabolic) library(ggplot2) ggplot(parabolic, aes(x = X1, y = X2, col = class)) + geom_point(alpha = .5) + theme_bw() }