Package 'dials'

Title: Tools for Creating Tuning Parameter Values
Description: Many models contain tuning parameters (i.e. parameters that cannot be directly estimated from the data). These tools can be used to define objects for creating, simulating, or validating values for such parameters.
Authors: Max Kuhn [aut], Hannah Frick [aut, cre], Posit Software, PBC [cph, fnd]
Maintainer: Hannah Frick <[email protected]>
License: MIT + file LICENSE
Version: 1.3.0.9000
Built: 2024-11-18 03:38:29 UTC
Source: https://github.com/tidymodels/dials

Help Index


Activation functions between network layers

Description

Activation functions between network layers

Usage

activation(values = values_activation)

activation_2(values = values_activation)

values_activation

Arguments

values

A character string of possible values. See values_activation in examples below.

Format

An object of class character of length 5.

Details

This parameter is used in parsnip models for neural networks such as parsnip:::mlp().

Examples

values_activation
activation()

Parameters to adjust effective degrees of freedom

Description

This parameter can be used to moderate smoothness of spline or other terms used in generalized additive models.

Usage

adjust_deg_free(range = c(0.25, 4), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

Used in parsnip::gen_additive_mod().

Examples

adjust_deg_free()

Parameter to determine which neighbors to use

Description

Used in themis::step_bsmote().

Usage

all_neighbors(values = c(TRUE, FALSE))

Arguments

values

A vector of possible values (TRUE or FALSE).

Examples

all_neighbors()

Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models.

Description

Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models.

Usage

prior_terminal_node_coef(range = c(0, 1), trans = NULL)

prior_terminal_node_expo(range = c(1, 3), trans = NULL)

prior_outcome_range(range = c(0, 5), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

These parameters are often used with Bayesian adaptive regression trees (BART) via parsnip::bart().


Buffer size

Description

In equivocal zones, predictions are considered equivocal (i.e. "could go either way") if their probability falls within some distance on either side of the classification threshold. That distance is called the "buffer."

Usage

buffer(range = c(0, 0.5), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

A buffer of .5 is only possible if the classification threshold is .5. In that case, all probability predictions are considered equivocal, regardless of their value in [0, 1]. Otherwise, the maximum buffer is min(threshold, 1 - threshold).

See Also

threshold()

Examples

buffer()

Parameters for class weights for imbalanced problems

Description

This parameter can be used to moderate how much influence certain classes receive during training.

Usage

class_weights(range = c(1, 10), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

Used in brulee::brulee_logistic_reg() and brulee::brulee_mlp()

Examples

class_weights()

Parameters for possible engine parameters for partykit models

Description

Parameters for possible engine parameters for partykit models

Usage

conditional_min_criterion(
  range = c(1.386294, 15),
  trans = scales::transform_logit()
)

values_test_type

conditional_test_type(values = values_test_type)

values_test_statistic

conditional_test_statistic(values = values_test_statistic)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

values

A character string of possible values.

Format

An object of class character of length 4.

An object of class character of length 2.

Details

The range of conditional_min_criterion() corresponds to roughly 0.80 to 0.99997 in the natural units. For several test types, this parameter corresponds to 1 - {p-value}.

Value

For the functions, they return a function with classes "param" and either "quant_param" or "qual_param".


Parameters for possible engine parameters for C5.0

Description

These parameters are auxiliary to tree-based models that use the "C5.0" engine. They correspond to tuning parameters that would be specified using set_engine("C5.0", ...).

Usage

confidence_factor(range = c(-1, 0), trans = transform_log10())

no_global_pruning(values = c(TRUE, FALSE))

predictor_winnowing(values = c(TRUE, FALSE))

fuzzy_thresholding(values = c(TRUE, FALSE))

rule_bands(range = c(2L, 500L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

values

For no_global_pruning(), predictor_winnowing(), and fuzzy_thresholding() either TRUE or FALSE.

Details

To use these, check ?C50::C5.0Control to see how they are used.

Examples

confidence_factor()
no_global_pruning()
predictor_winnowing()
fuzzy_thresholding()
rule_bands()

Support vector machine parameters

Description

Parameters related to the SVM objective function(s).

Usage

cost(range = c(-10, 5), trans = transform_log2())

svm_margin(range = c(0, 0.2), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

cost()
svm_margin()

Degrees of freedom (integer)

Description

The number of degrees of freedom used for model parameters.

Usage

deg_free(range = c(1L, 5L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

One context in which this parameter is used is spline basis functions.

Examples

deg_free()

Parameters for exponents

Description

These parameters help model cases where an exponent is of interest (e.g. degree() or spline_degree()) or a product is used (e.g. prod_degree).

Usage

degree(range = c(1, 3), trans = NULL)

degree_int(range = c(1L, 3L), trans = NULL)

spline_degree(range = c(1L, 10L), trans = NULL)

prod_degree(range = c(1L, 2L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

degree() is helpful for parameters that are real number exponents (e.g. x^degree) whereas degree_int() is for cases where the exponent should be an integer.

The difference between degree_int() and spline_degree() is the default ranges (which is based on the context of how/where they are used).

prod_degree() is used by parsnip::mars() for the number of terms in interactions (and generates an integer).

Examples

degree()
degree_int()
spline_degree()
prod_degree()

Minkowski distance parameter

Description

Used in parsnip::nearest_neighbor().

Usage

dist_power(range = c(1, 2), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

This parameter controls how distances are calculated. For example, dist_power = 1 corresponds to Manhattan distance while dist_power = 2 is Euclidean distance.

Examples

dist_power()

Neural network parameters

Description

These functions generate parameters that are useful for neural network models.

Usage

dropout(range = c(0, 1), trans = NULL)

epochs(range = c(10L, 1000L), trans = NULL)

hidden_units(range = c(1L, 10L), trans = NULL)

hidden_units_2(range = c(1L, 10L), trans = NULL)

batch_size(range = c(unknown(), unknown()), trans = transform_log2())

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

  • dropout(): The parameter dropout rate. (See parsnip:::mlp()).

  • epochs(): The number of iterations of training. (See parsnip:::mlp()).

  • hidden_units(): The number of hidden units in a network layer. (See parsnip:::mlp()).

  • batch_size(): The mini-batch size for neural networks.

Examples

dropout()

Parameters for possible engine parameters for Cubist

Description

These parameters are auxiliary to models that use the "Cubist" engine. They correspond to tuning parameters that would be specified using set_engine("Cubist0", ...).

Usage

extrapolation(range = c(1, 110), trans = NULL)

unbiased_rules(values = c(TRUE, FALSE))

max_rules(range = c(1L, 100L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

values

For unbiased_rules(), either TRUE or FALSE.

Details

To use these, check ?Cubist::cubistControl to see how they are used.

Examples

extrapolation()
unbiased_rules()
max_rules()

Functions to finalize data-specific parameter ranges

Description

These functions take a parameter object and modify the unknown parts of ranges based on a data set and simple heuristics.

Usage

finalize(object, ...)

## S3 method for class 'list'
finalize(object, x, force = TRUE, ...)

## S3 method for class 'param'
finalize(object, x, force = TRUE, ...)

## S3 method for class 'parameters'
finalize(object, x, force = TRUE, ...)

## S3 method for class 'logical'
finalize(object, x, force = TRUE, ...)

## Default S3 method:
finalize(object, x, force = TRUE, ...)

get_p(object, x, log_vals = FALSE, ...)

get_log_p(object, x, ...)

get_n_frac(object, x, log_vals = FALSE, frac = 1/3, ...)

get_n_frac_range(object, x, log_vals = FALSE, frac = c(1/10, 5/10), ...)

get_n(object, x, log_vals = FALSE, ...)

get_rbf_range(object, x, seed = sample.int(10^5, 1), ...)

get_batch_sizes(object, x, frac = c(1/10, 1/3), ...)

Arguments

object

A param object or a list of param objects.

...

Other arguments to pass to the underlying parameter finalizer functions. For example, for get_rbf_range(), the dots are passed along to kernlab::sigest().

x

The predictor data. In some cases (see below) this should only include numeric data.

force

A single logical that indicates that even if the parameter object is complete, should it update the ranges anyway?

log_vals

A logical: should the ranges be set on the log10 scale?

frac

A double for the fraction of the data to be used for the upper bound. For get_n_frac_range() and get_batch_sizes(), a vector of two fractional values are required.

seed

An integer to control the randomness of the calculations.

Details

finalize() runs the embedded finalizer function contained in the param object (object$finalize) and returns the updated version. The finalization function is one of the ⁠get_*()⁠ helpers.

The ⁠get_*()⁠ helper functions are designed to be used with the pipe and update the parameter object in-place.

get_p() and get_log_p() set the upper value of the range to be the number of columns in the data (on the natural and log10 scale, respectively).

get_n() and get_n_frac() set the upper value to be the number of rows in the data or a fraction of the total number of rows.

get_rbf_range() sets both bounds based on the heuristic defined in kernlab::sigest(). It requires that all columns in x be numeric.

Value

An updated param object or a list of updated param objects depending on what is provided in object.

Examples

library(dplyr)
car_pred <- select(mtcars, -mpg)

# Needs an upper bound
mtry()
finalize(mtry(), car_pred)

# Nothing to do here since no unknowns
penalty()
finalize(penalty(), car_pred)

library(kernlab)
library(tibble)
library(purrr)

params <-
  tribble(
    ~parameter, ~object,
    "mtry", mtry(),
    "num_terms", num_terms(),
    "rbf_sigma", rbf_sigma()
  )
params

# Note that `rbf_sigma()` has a default range that does not need to be
# finalized but will be changed if used in the function:
complete_params <-
  params %>%
  mutate(object = map(object, finalize, car_pred))
complete_params

params %>%
  dplyr::filter(parameter == "rbf_sigma") %>%
  pull(object)
complete_params %>%
  dplyr::filter(parameter == "rbf_sigma") %>%
  pull(object)

Near-zero variance parameters

Description

These parameters control the specificity of the filter for near-zero variance parameters in recipes::step_nzv().

Usage

freq_cut(range = c(5, 25), trans = NULL)

unique_cut(range = c(0, 100), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

Smaller values of freq_cut() and unique_cut() make the filter less sensitive.

Examples

freq_cut()
unique_cut()

Create grids of tuning parameters

Description

Random and regular grids can be created for any number of parameter objects.

Usage

grid_regular(x, ..., levels = 3, original = TRUE, filter = NULL)

## S3 method for class 'parameters'
grid_regular(x, ..., levels = 3, original = TRUE, filter = NULL)

## S3 method for class 'list'
grid_regular(x, ..., levels = 3, original = TRUE, filter = NULL)

## S3 method for class 'param'
grid_regular(x, ..., levels = 3, original = TRUE, filter = NULL)

grid_random(x, ..., size = 5, original = TRUE, filter = NULL)

## S3 method for class 'parameters'
grid_random(x, ..., size = 5, original = TRUE, filter = NULL)

## S3 method for class 'list'
grid_random(x, ..., size = 5, original = TRUE, filter = NULL)

## S3 method for class 'param'
grid_random(x, ..., size = 5, original = TRUE, filter = NULL)

Arguments

x

A param object, list, or parameters.

...

One or more param objects (such as mtry() or penalty()). None of the objects can have unknown() values in the parameter ranges or values.

levels

An integer for the number of values of each parameter to use to make the regular grid. levels can be a single integer or a vector of integers that is the same length as the number of parameters in .... levels can be a named integer vector, with names that match the id values of parameters.

original

A logical: should the parameters be in the original units or in the transformed space (if any)?

filter

A logical: should the parameters be filtered prior to generating the grid. Must be a single expression referencing parameter names that evaluates to a logical vector.

size

A single integer for the total number of parameter value combinations returned for the random grid. If duplicate combinations are generated from this size, the smaller, unique set is returned.

Details

Note that there may a difference in grids depending on how the function is called. If the call uses the parameter objects directly the possible ranges come from the objects in dials. For example:

mixture()
## Proportion of Lasso Penalty (quantitative)
## Range: [0, 1]
set.seed(283)
mix_grid_1 <- grid_random(mixture(), size = 1000)
range(mix_grid_1$mixture)
## [1] 0.001490161 0.999741096

However, in some cases, the parsnip and recipe packages overrides the default ranges for specific models and preprocessing steps. If the grid function uses a parameters object created from a model or recipe, the ranges may have different defaults (specific to those models). Using the example above, the mixture argument above is different for glmnet models:

library(parsnip)
library(tune)

# When used with glmnet, the range is [0.05, 1.00]
glmn_mod <-
  linear_reg(mixture = tune()) %>%
  set_engine("glmnet")

set.seed(283)
mix_grid_2 <- grid_random(extract_parameter_set_dials(glmn_mod), size = 1000)
range(mix_grid_2$mixture)
## [1] 0.05141565 0.99975404

Value

A tibble. There are columns for each parameter and a row for every parameter combination.

Examples

# filter arg will allow you to filter subsequent grid data frame based on some condition.
p <- parameters(penalty(), mixture())
grid_regular(p)
grid_regular(p, filter = penalty <= .01)

# Will fail due to unknowns:
# grid_regular(mtry(), min_n())

grid_regular(penalty(), mixture())
grid_regular(penalty(), mixture(), levels = 3:4)
grid_regular(penalty(), mixture(), levels = c(mixture = 4, penalty = 3))
grid_random(penalty(), mixture())

Space-filling parameter grids

Description

Experimental designs for computer experiments are used to construct parameter grids that try to cover the parameter space such that any portion of the space has does not have an observed combination that is unnecessarily close to any other point.

Usage

grid_space_filling(x, ..., size = 5, type = "any", original = TRUE)

## S3 method for class 'parameters'
grid_space_filling(
  x,
  ...,
  size = 5,
  type = "any",
  variogram_range = 0.5,
  iter = 1000,
  original = TRUE
)

## S3 method for class 'list'
grid_space_filling(
  x,
  ...,
  size = 5,
  type = "any",
  variogram_range = 0.5,
  iter = 1000,
  original = TRUE
)

## S3 method for class 'param'
grid_space_filling(
  x,
  ...,
  size = 5,
  variogram_range = 0.5,
  iter = 1000,
  type = "any",
  original = TRUE
)

Arguments

x

A param object, list, or parameters.

...

One or more param objects (such as mtry() or penalty()). None of the objects can have unknown() values in the parameter ranges or values.

size

A single integer for the maximum number of parameter value combinations returned. If duplicate combinations are generated from this size, the smaller, unique set is returned.

type

A character string with possible values: "any", "audze_eglais", "max_min_l1", "max_min_l2", "uniform", "max_entropy", or "latin_hypercube". A value of "any" will choose the first design available (in the order listed above, excluding "latin_hypercube"). If the design is extremely small, the function may change the type to "latin_hypercube" (with a warning).

original

A logical: should the parameters be in the original units or in the transformed space (if any)?

variogram_range

A numeric value greater than zero. Larger values reduce the likelihood of empty regions in the parameter space. Only used for type = "max_entropy".

iter

An integer for the maximum number of iterations used to find a good design. Only used for type = "max_entropy".

Details

The types of designs supported here are latin hypercube designs of different types. The simple designs produced by grid_latin_hypercube() are space-filling but don’t guarantee or optimize any other properties. grid_space_filling() might be able to produce designs that discourage grid points from being close to one another. There are a lot of methods for doing this, such as maximizing the minimum distance between points (see Husslage et al 2001). grid_max_entropy() attempts to maximize the determinant of the spatial correlation matrix between coordinates.

Latin hypercube and maximum entropy designs use random numbers to make the designs.

By default, grid_space_filling() will try to use a pre-optimized space-filling design from https://www.spacefillingdesigns.nl/ (see Husslage et al, 2011) or using a uniform design. If no pre-made design is available, then a maximum entropy design is created.

Also note that there may a difference in grids depending on how the function is called. If the call uses the parameter objects directly the possible ranges come from the objects in dials. For example:

mixture()
## Proportion of Lasso Penalty (quantitative)
## Range: [0, 1]
set.seed(283)
mix_grid_1 <- grid_latin_hypercube(mixture(), size = 1000)
range(mix_grid_1$mixture)
## [1] 0.0001530482 0.9999530388

However, in some cases, the parsnip and recipe packages overrides the default ranges for specific models and preprocessing steps. If the grid function uses a parameters object created from a model or recipe, the ranges may have different defaults (specific to those models). Using the example above, the mixture argument above is different for glmnet models:

library(parsnip)
library(tune)

# When used with glmnet, the range is [0.05, 1.00]
glmn_mod <-
  linear_reg(mixture = tune()) %>%
  set_engine("glmnet")

set.seed(283)
mix_grid_2 <-
  glmn_mod %>% 
  extract_parameter_set_dials() %>% 
  grid_latin_hypercube(size = 1000)
range(mix_grid_2$mixture)
## [1] 0.0501454 0.9999554

References

Sacks, Jerome & Welch, William & J. Mitchell, Toby, and Wynn, Henry. (1989). Design and analysis of computer experiments. With comments and a rejoinder by the authors. Statistical Science. 4. 10.1214/ss/1177012413.

Santner, Thomas, Williams, Brian, and Notz, William. (2003). The Design and Analysis of Computer Experiments. Springer.

Dupuy, D., Helbert, C., and Franco, J. (2015). DiceDesign and DiceEval: Two R packages for design and analysis of computer experiments. Journal of Statistical Software, 65(11)

Husslage, B. G., Rennen, G., Van Dam, E. R., & Den Hertog, D. (2011). Space-filling Latin hypercube designs for computer experiments. Optimization and Engineering, 12, 611-630.

Fang, K. T., Lin, D. K., Winker, P., & Zhang, Y. (2000). Uniform design: Theory and application. _Technometric_s, 42(3), 237-248

Examples

grid_space_filling(
  hidden_units(),
  penalty(),
  epochs(),
  activation(),
  learn_rate(c(0, 1), trans = scales::transform_log()),
  size = 10,
  original = FALSE
)
# ------------------------------------------------------------------------------
# comparing methods

if (rlang::is_installed("ggplot2")) {

  library(dplyr)
  library(ggplot2)

  set.seed(383)
  parameters(trees(), mixture()) %>%
    grid_space_filling(size = 25, type = "latin_hypercube") %>%
    ggplot(aes(trees, mixture)) +
    geom_point() +
    lims(y = 0:1, x = c(1, 2000)) +
    ggtitle("latin hypercube")

  set.seed(383)
  parameters(trees(), mixture()) %>%
    grid_space_filling(size = 25, type = "max_entropy") %>%
    ggplot(aes(trees, mixture)) +
    geom_point() +
    lims(y = 0:1, x = c(1, 2000)) +
    ggtitle("maximum entropy")

  parameters(trees(), mixture()) %>%
    grid_space_filling(size = 25, type = "audze_eglais") %>%
    ggplot(aes(trees, mixture)) +
    geom_point() +
    lims(y = 0:1, x = c(1, 2000)) +
    ggtitle("Audze-Eglais")

  parameters(trees(), mixture()) %>%
    grid_space_filling(size = 25, type = "uniform") %>%
    ggplot(aes(trees, mixture)) +
    geom_point() +
    lims(y = 0:1, x = c(1, 2000)) +
    ggtitle("uniform")
}

Harmonic Frequency

Description

Used in recipes::step_harmonic().

Usage

harmonic_frequency(range = c(0.01, 1), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

harmonic_frequency()

Initialization method for UMAP

Description

This parameter is the type of initialization for the UMAP coordinates. Can be one of "spectral", "normlaplacian", "random", "lvrandom", "laplacian", "pca", "spca", or "agspectral". See uwot::umap() for more details.

Usage

initial_umap(values = values_initial_umap)

values_initial_umap

Arguments

values

A character string of possible values. See values_initial_umap in examples below.

Format

An object of class character of length 8.

Details

This parameter is used in recipes via embed::step_umap().

Examples

values_initial_umap
initial_umap()

Laplace correction parameter

Description

Laplace correction for smoothing low-frequency counts.

Usage

Laplace(range = c(0, 3), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

This parameter is often used to correct for zero-count data in tables or proportions.

Value

A function with classes "quant_param" and "param".

Examples

Laplace()

Learning rate

Description

The parameter is used in boosting methods (parsnip::boost_tree()) or some types of neural network optimization methods.

Usage

learn_rate(range = c(-10, -1), trans = transform_log10())

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

The parameter is used on the log10 scale. The units for the range function are on this scale.

learn_rate() corresponds to eta in xgboost.

Examples

learn_rate()

Parameters for possible engine parameters for randomForest

Description

These parameters are auxiliary to random forest models that use the "randomForest" engine. They correspond to tuning parameters that would be specified using set_engine("randomForest", ...).

Usage

max_nodes(range = c(100L, 10000L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

max_nodes()

Parameters for possible engine parameters for earth models

Description

These parameters are auxiliary to models that use the "earth" engine. They correspond to tuning parameters that would be specified using set_engine("earth", ...).

Usage

max_num_terms(range = c(20L, 200L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

To use these, check ?earth::earth to see how they are used.

Examples

max_num_terms()

Word frequencies for removal

Description

Used in textrecipes::step_tokenfilter().

Usage

max_times(range = c(1L, as.integer(10^5)), trans = NULL)

min_times(range = c(0L, 1000L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

max_times()
min_times()

Maximum number of retained tokens

Description

Used in textrecipes::step_tokenfilter().

Usage

max_tokens(range = c(0L, as.integer(10^3)), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

max_tokens()

Parameter for the effective minimum distance between embedded points

Description

Used in embed::step_umap().

Usage

min_dist(range = c(-4, 0), trans = transform_log10())

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

min_dist()

Number of unique values for pre-processing

Description

Some pre-processing parameters require a minimum number of unique data points to proceed. Used in recipes::step_discretize().

Usage

min_unique(range = c(5L, 15L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

min_unique()

Mixture of penalization terms

Description

A numeric parameter function representing the relative amount of penalties (e.g. L1, L2, etc) in regularized models.

Usage

mixture(range = c(0, 1), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

This parameter is used for regularized or penalized models such as parsnip::linear_reg(), parsnip::logistic_reg(), and others. It is formulated as the proportion of L1 regularization (i.e. lasso) in the model. In the glmnet model, mixture = 1 is a pure lasso model while mixture = 0 indicates that ridge regression is being used.

Examples

mixture()

Gradient descent momentum parameter

Description

A useful parameter for neural network models using gradient descent

Usage

momentum(range = c(0, 1), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

momentum()

Number of randomly sampled predictors

Description

The number of predictors that will be randomly sampled at each split when creating tree models.

Usage

mtry(range = c(1L, unknown()), trans = NULL)

mtry_long(range = c(0L, unknown()), trans = transform_log10())

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

This parameter is used for regularized or penalized models such as parsnip::rand_forest() and others. mtry_long() has the values on the log10 scale and is helpful when the data contain a large number of predictors.

Since the scale of the parameter depends on the number of columns in the data set, the upper bound is set to unknown but can be filled in via the finalize() method.

Interpretation

mtry_prop() is a variation on mtry() where the value is interpreted as the proportion of predictors that will be randomly sampled at each split rather than the count.

This parameter is not intended for use in accommodating engines that take in this argument as a proportion; mtry is often a main model argument rather than an engine-specific argument, and thus should not have an engine-specific interface.

When wrapping modeling engines that interpret mtry in its sense as a proportion, use the mtry() parameter in parsnip::set_model_arg() and process the passed argument in an internal wrapping function as mtry / number_of_predictors. In addition, introduce a logical argument counts to the wrapping function, defaulting to TRUE, that indicates whether to interpret the supplied argument as a count rather than a proportion.

For an example implementation, see parsnip::xgb_train().

See Also

mtry_prop

Examples

mtry(c(1L, 10L)) # in original units
mtry_long(c(0, 5)) # in log10 units

Proportion of Randomly Selected Predictors

Description

The proportion of predictors that will be randomly sampled at each split when creating tree models.

Usage

mtry_prop(range = c(0.1, 1), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Value

A dials object with classes "quant_param" and "param". The range element of the object is always converted to a list with elements "lower" and "upper".

Interpretation

mtry_prop() is a variation on mtry() where the value is interpreted as the proportion of predictors that will be randomly sampled at each split rather than the count.

This parameter is not intended for use in accommodating engines that take in this argument as a proportion; mtry is often a main model argument rather than an engine-specific argument, and thus should not have an engine-specific interface.

When wrapping modeling engines that interpret mtry in its sense as a proportion, use the mtry() parameter in parsnip::set_model_arg() and process the passed argument in an internal wrapping function as mtry / number_of_predictors. In addition, introduce a logical argument counts to the wrapping function, defaulting to TRUE, that indicates whether to interpret the supplied argument as a count rather than a proportion.

For an example implementation, see parsnip::xgb_train().

See Also

mtry, mtry_long

Examples

mtry_prop()

Number of neighbors

Description

The number of neighbors is used for models (parsnip::nearest_neighbor()), imputation (recipes::step_impute_knn()), and dimension reduction (recipes::step_isomap()).

Usage

neighbors(range = c(1L, 10L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

A static range is used but a broader range should be used if the data set is large or more neighbors are required.

Examples

neighbors()

Tools for creating new parameter objects

Description

These functions are used to construct new parameter objects. Generally, these functions are called from higher level parameter generating functions like mtry().

Usage

new_quant_param(
  type = c("double", "integer"),
  range = NULL,
  inclusive = NULL,
  default = deprecated(),
  trans = NULL,
  values = NULL,
  label = NULL,
  finalize = NULL,
  ...,
  call = caller_env()
)

new_qual_param(
  type = c("character", "logical"),
  values,
  default = deprecated(),
  label = NULL,
  finalize = NULL,
  ...,
  call = caller_env()
)

Arguments

type

A single character value. For quantitative parameters, valid choices are "double" and "integer" while for qualitative factors they are "character" and "logical".

range

A two-element vector with the smallest or largest possible values, respectively. If these cannot be set when the parameter is defined, the unknown() function can be used. If a transformation is specified, these values should be in the transformed units. If values is supplied, and range is NULL, range will be set to range(values).

inclusive

A two-element logical vector for whether the range values should be inclusive or exclusive. If values is supplied, and inclusive is NULL, inclusive will be set to c(TRUE, TRUE).

default

[Deprecated] No longer used. If a value is supplied, it will be ignored and a warning will be thrown.

trans

A trans object from the scales package, such as scales::transform_log() or scales::transform_reciprocal(). Create custom transforms with scales::new_transform().

values

A vector of possible values that is required when type is "character" or "logical" but optional otherwise. For quantitative parameters, this can be used as an alternative to range and inclusive. If set, these will be used by value_seq() and value_sample().

label

An optional named character string that can be used for printing and plotting. The name should match the object name (e.g. "mtry", "neighbors", etc.)

finalize

A function that can be used to set the data-specific values of a parameter (such as the range).

...

These dots are for future extensions and must be empty.

call

The call passed on to cli::cli_abort().

Value

An object of class "param" with the primary class being either "quant_param" or "qual_param". The range element of the object is always converted to a list with elements "lower" and "upper".

Examples

# Create a function that generates a quantitative parameter
# corresponding to the number of subgroups.
num_subgroups <- function(range = c(1L, 20L), trans = NULL) {
  new_quant_param(
    type = "integer",
    range = range,
    inclusive = c(TRUE, TRUE),
    trans = trans,
    label = c(num_subgroups = "# Subgroups"),
    finalize = NULL
  )
}

num_subgroups()

num_subgroups(range = c(3L, 5L))

# Custom parameters instantly have access
# to sequence generating functions
value_seq(num_subgroups(), 5)

Number of cut-points for binning

Description

This parameter controls how many bins are used when discretizing predictors. Used in recipes::step_discretize() and embed::step_discretize_xgb().

Usage

num_breaks(range = c(2L, 10L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

num_breaks()

Number of Clusters

Description

Used in most tidyclust models.

Usage

num_clusters(range = c(1L, 10L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

num_clusters()

Number of new features

Description

The number of derived predictors from models or feature engineering methods.

Usage

num_comp(range = c(1L, unknown()), trans = NULL)

num_terms(range = c(1L, unknown()), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

Since the scale of these parameters often depends on the number of columns in the data set, the upper bound is set to unknown. For example, the number of PCA components is limited by the number of columns and so on.

The difference between num_comp() and num_terms() is semantics.

Examples

num_terms()
num_terms(c(2L, 10L))

Text hashing parameters

Description

Used in textrecipes::step_texthash() and textrecipes::step_dummy_hash().

Usage

num_hash(range = c(8L, 12L), trans = transform_log2())

signed_hash(values = c(TRUE, FALSE))

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

values

A vector of possible values (TRUE or FALSE).

Examples

num_hash()
signed_hash()

Number of knots (integer)

Description

The number of knots used for spline model parameters.

Usage

num_knots(range = c(0L, 5L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

One context in which this parameter is used is spline basis functions.

Examples

num_knots()

Possible engine parameters for lightbgm

Description

These parameters are auxiliary to tree-based models that use the "lightgbm" engine. They correspond to tuning parameters that would be specified using set_engine("lightgbm", ...).

Usage

num_leaves(range = c(5, 100), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

"lightbgm" is an available engine in the parsnip extension package bonsai

For more information, see the lightgbm webpage.

Examples

num_leaves()

Number of Computation Runs

Description

Used in recipes::step_nnmf().

Usage

num_runs(range = c(1L, 10L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

num_runs()

Parameter to determine number of tokens in ngram

Description

Used in textrecipes::step_ngram().

Usage

num_tokens(range = c(1, 3), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

num_tokens()

Parameters for class-imbalance sampling

Description

For up- and down-sampling methods, these parameters control how much data are added or removed from the training set. Used in themis::step_rose(), themis::step_smotenc(), themis::step_bsmote(), themis::step_upsample(), themis::step_downsample(), and themis::step_nearmiss().

Usage

over_ratio(range = c(0.8, 1.2), trans = NULL)

under_ratio(range = c(0.8, 1.2), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

under_ratio()
over_ratio()

Information on tuning parameters within an object

Description

Information on tuning parameters within an object

Usage

parameters(x, ...)

## Default S3 method:
parameters(x, ...)

## S3 method for class 'param'
parameters(x, ...)

## S3 method for class 'list'
parameters(x, ...)

Arguments

x

An object, such as a list of param objects or an actual param object.

...

Only used for the param method so that multiple param objects can be passed to the function.


Amount of regularization/penalization

Description

A numeric parameter function representing the amount of penalties (e.g. L1, L2, etc) in regularized models.

Usage

penalty(range = c(-10, 0), trans = transform_log10())

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

This parameter is used for regularized or penalized models such as parsnip::linear_reg(), parsnip::logistic_reg(), and others.

Examples

penalty()

Proportion of predictors

Description

The parameter is used in models where a parameter is the proportion of predictor variables.

Usage

predictor_prop(range = c(0, 1), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

predictor_prop() is used in step_pls().

Examples

predictor_prop()

Bayesian PCA parameters

Description

A numeric parameter function representing parameters for the spike-and-slab prior used by embed::step_pca_sparse_bayes().

Usage

prior_slab_dispersion(range = c(-1/2, log10(3)), trans = transform_log10())

prior_mixture_threshold(range = c(0, 1), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

prior_slab_dispersion() is related to the prior for the case where a PCA loading is selected (i.e. non-zero). Smaller values result in an increase in zero coefficients.

prior_mixture_threshold() is used to threshold the prior to determine which parameters are non-zero or zero. Increasing this parameter increases the number of zero coefficients.

Examples

mixture()

MARS pruning methods

Description

MARS pruning methods

Usage

prune_method(values = values_prune_method)

values_prune_method

Arguments

values

A character string of possible values. See values_prune_method in examples below.

Format

An object of class character of length 6.

Details

This parameter is used in parsnip:::mars().

Examples

values_prune_method
prune_method()

Limits for the range of predictions

Description

Range limits truncate model predictions to a specific range of values, typically to avoid extreme or unrealistic predictions.

Usage

lower_limit(range = c(-Inf, Inf), trans = NULL)

upper_limit(range = c(-Inf, Inf), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

lower_limit()
upper_limit()

Tools for working with parameter ranges

Description

Setters, getters, and validators for parameter ranges.

Usage

range_validate(object, range, ukn_ok = TRUE, ..., call = caller_env())

range_get(object, original = TRUE)

range_set(object, range)

Arguments

object

An object with class quant_param.

range

A two-element numeric vector or list (including Inf). Values can include unknown() when ukn_ok = TRUE.

ukn_ok

A single logical for whether unknown() is an acceptable value.

...

These dots are for future extensions and must be empty.

call

The call passed on to cli::cli_abort().

original

A single logical. Should the range values be in the natural units (TRUE) or in the transformed space (FALSE, if applicable)?

Value

range_validate() returns the new range if it passes the validation process (and throws an error otherwise).

range_get() returns the current range of the object.

range_set() returns an updated version of the parameter object with a new range.

Examples

library(dplyr)

my_lambda <- penalty() %>%
  value_set(-4:-1)

try(
  range_validate(my_lambda, c(-10, NA)),
  silent = TRUE
) %>%
  print()

range_get(my_lambda)

my_lambda %>%
  range_set(c(-10, 2)) %>%
  range_get()

Kernel parameters

Description

Parameters related to the radial basis or other kernel functions.

Usage

rbf_sigma(range = c(-10, 0), trans = transform_log10())

scale_factor(range = c(-10, -1), trans = transform_log10())

kernel_offset(range = c(0, 2), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

degree() can also be used in kernel functions.

Examples

rbf_sigma()
scale_factor()
kernel_offset()

Parameters for possible engine parameters for ranger

Description

These parameters are auxiliary to random forest models that use the "ranger" engine. They correspond to tuning parameters that would be specified using set_engine("ranger", ...).

Usage

regularization_factor(range = c(0, 1), trans = NULL)

regularize_depth(values = c(TRUE, FALSE))

significance_threshold(range = c(-10, 0), trans = transform_log10())

lower_quantile(range = c(0, 1), trans = NULL)

splitting_rule(values = ranger_split_rules)

ranger_class_rules

ranger_reg_rules

ranger_split_rules

num_random_splits(range = c(1L, 15L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

values

For splitting_rule(), a character string of possible values. See ranger_split_rules, ranger_class_rules, and ranger_reg_rules for appropriate values. For regularize_depth(), either TRUE or FALSE.

Format

An object of class character of length 3.

An object of class character of length 4.

An object of class character of length 7.

Details

To use these, check ?ranger::ranger to see how they are used. Some are conditional on others. For example, significance_threshold(), num_random_splits(), and others are only used when splitting_rule = "extratrees".

Examples

regularization_factor()
regularize_depth()

Estimation methods for regularized models

Description

Estimation methods for regularized models

Usage

regularization_method(values = values_regularization_method)

values_regularization_method

Arguments

values

A character string of possible values. See values_regularization_method in examples below.

Format

An object of class character of length 4.

Details

This parameter is used in parsnip::discrim_linear().

Examples

values_regularization_method
regularization_method()

Parameters for possible engine parameters for xgboost

Description

These parameters are auxiliary to tree-based models that use the "xgboost" engine. They correspond to tuning parameters that would be specified using set_engine("xgboost", ...).

Usage

scale_pos_weight(range = c(0.8, 1.2), trans = NULL)

penalty_L2(range = c(-10, 1), trans = transform_log10())

penalty_L1(range = c(-10, 1), trans = transform_log10())

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

For more information, see the xgboost webpage.

Examples

scale_pos_weight()
penalty_L2()
penalty_L1()

Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models.

Description

Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models.

Usage

rate_initial(range = c(-3, -1), trans = transform_log10())

rate_largest(range = c(-1, -1/2), trans = transform_log10())

rate_reduction(range = c(1/5, 1), trans = NULL)

rate_steps(range = c(2, 10), trans = NULL)

rate_step_size(range = c(2, 20), trans = NULL)

rate_decay(range = c(0, 2), trans = NULL)

rate_schedule(values = values_scheduler)

values_scheduler

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

values

A character string of possible values. See values_scheduler in examples below.

Format

An object of class character of length 5.

Details

These parameters are often used with neural networks via parsnip::mlp(engine = "brulee").

The details for how the brulee schedulers change the rates:

  • schedule_decay_time(): rate(epoch)=initial/(1+decay×epoch)rate(epoch) = initial/(1 + decay \times epoch)

  • schedule_decay_expo(): rate(epoch)=initialexp(decay×epoch)rate(epoch) = initial\exp(-decay \times epoch)

  • schedule_step(): rate(epoch)=initial×reductionfloor(epoch/steps)rate(epoch) = initial \times reduction^{floor(epoch / steps)}

  • schedule_cyclic(): cycle=floor(1+(epoch/2/stepsize))cycle = floor( 1 + (epoch / 2 / step size) ), x=abs((epoch/stepsize)(2cycle)+1)x = abs( ( epoch / step size ) - ( 2 * cycle) + 1 ), and rate(epoch)=initial+(largestinitial)max(0,1x)rate(epoch) = initial + ( largest - initial ) * \max( 0, 1 - x)


Parameter to enable feature selection

Description

Used in parsnip::gen_additive_mod().

Usage

select_features(values = c(TRUE, FALSE))

Arguments

values

A vector of possible values (TRUE or FALSE).

Examples

select_features()

Parameters for possible engine parameters for sda models

Description

These functions can be used to optimize engine-specific parameters of sda::sda() via parsnip::discrim_linear().

Usage

shrinkage_correlation(range = c(0, 1), trans = NULL)

shrinkage_variance(range = c(0, 1), trans = NULL)

shrinkage_frequencies(range = c(0, 1), trans = NULL)

diagonal_covariance(values = c(TRUE, FALSE))

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

values

A vector of possible values (TRUE or FALSE).

Details

These functions map to sda::sda() arguments via:

  • shrinkage_correlation() to lambda

  • shrinkage_variance() to lambda.var

  • shrinkage_frequencies() to lambda.freqs

  • diagonal_covariance() to diagonal

Value

For the functions, they return a function with classes "param" and either "quant_param" or "qual_param".


Kernel Smoothness

Description

Used in discrim::naive_Bayes().

Usage

smoothness(range = c(0.5, 1.5), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

smoothness()

Early stopping parameter

Description

For some models, the effectiveness of the model can decrease as training iterations continue. stop_iter() can be used to tune how many iterations without an improvement in the objective function occur before training should be halted.

Usage

stop_iter(range = c(3L, 20L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

stop_iter()

Rolling summary statistic for moving windows

Description

This parameter is used in recipes::step_window().

Usage

summary_stat(values = values_summary_stat)

values_summary_stat

Arguments

values

A character string of possible values. See values_summary_stat in examples below.

Format

An object of class character of length 8.

Examples

values_summary_stat
summary_stat()

Parametric distributions for censored data

Description

Parametric distributions for censored data

Usage

surv_dist(values = values_surv_dist)

values_surv_dist

Arguments

values

A character string of possible values. See values_surv_dist in examples below.

Format

An object of class character of length 6.

Details

This parameter is used in parsnip::survival_reg().

Examples

values_surv_dist
surv_dist()

Amount of supervision parameter

Description

For uwot::umap() and embed::step_umap(), this is a weighting factor between data topology and target topology. A value of 0.0 weights entirely on data, a value of 1.0 weights entirely on target. The default of 0.5 balances the weighting equally between data and target.

Usage

target_weight(range = c(0, 1), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Details

This parameter is used in recipes via embed::step_umap().

Examples

target_weight()

General thresholding parameter

Description

In a number of cases, there are arguments that are threshold values for data falling between zero and one. For example, recipes::step_other() and so on.

Usage

threshold(range = c(0, 1), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

threshold()

Token types

Description

Token types

Usage

token(values = values_token)

values_token

Arguments

values

A character string of possible values. See values_token in examples below.

Format

An object of class character of length 12.

Details

This parameter is used in textrecipes::step_tokenize().

Examples

values_token
token()

Parameter functions related to tree- and rule-based models.

Description

These are parameter generating functions that can be used for modeling, especially in conjunction with the parsnip package.

Usage

trees(range = c(1L, 2000L), trans = NULL)

min_n(range = c(2L, 40L), trans = NULL)

sample_size(range = c(unknown(), unknown()), trans = NULL)

sample_prop(range = c(1/10, 1), trans = NULL)

loss_reduction(range = c(-10, 1.5), trans = transform_log10())

tree_depth(range = c(1L, 15L), trans = NULL)

prune(values = c(TRUE, FALSE))

cost_complexity(range = c(-10, -1), trans = transform_log10())

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

values

A vector of possible values (TRUE or FALSE).

Details

These functions generate parameters that are useful when the model is based on trees or rules.

  • trees(): The number of trees contained in a random forest or boosted ensemble. In the latter case, this is equal to the number of boosting iterations. (See parsnip::rand_forest() and parsnip::boost_tree()).

  • min_n(): The minimum number of data points in a node that is required for the node to be split further. (See parsnip::rand_forest() and parsnip::boost_tree()).

  • sample_size(): The size of the data set used for modeling within an iteration of the modeling algorithm, such as stochastic gradient boosting. (See parsnip::boost_tree()).

  • sample_prop(): The same as sample_size() but as a proportion of the total sample.

  • loss_reduction(): The reduction in the loss function required to split further. (See parsnip::boost_tree()). This corresponds to gamma in xgboost.

  • tree_depth(): The maximum depth of the tree (i.e. number of splits). (See parsnip::boost_tree()).

  • prune(): A logical for whether a tree or set of rules should be pruned.

  • cost_complexity(): The cost-complexity parameter in classical CART models.

Examples

trees()
min_n()
sample_size()
loss_reduction()
tree_depth()
prune()
cost_complexity()

Amount of Trimming

Description

Used in recipes::step_impute_mean().

Usage

trim_amount(range = c(0, 0.5), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

trim_amount()

Placeholder for unknown parameter values

Description

unknown() creates an expression used to signify that the value will be specified at a later time.

Usage

unknown()

is_unknown(x)

has_unknowns(object)

Arguments

x

An object or vector or objects to test for unknown-ness.

object

An object of class param.

Value

unknown() returns expression value for unknown().

is_unknown() returns a vector of logicals as long as x that are TRUE is the element of x is unknown, and FALSE otherwise.

has_unknowns() returns a single logical indicating if the range of a param object has any unknown values.

Examples

# Just returns an expression
unknown()

# Of course, true!
is_unknown(unknown())

# Create a range with a minimum of 1
# and an unknown maximum
range <- c(1, unknown())

range

# The first value is known, the
# second is not
is_unknown(range)

# mtry()'s maximum value is not known at
# creation time
has_unknowns(mtry())

Update a single parameter in a parameter set

Description

Update a single parameter in a parameter set

Usage

## S3 method for class 'parameters'
update(object, ...)

Arguments

object

A parameter set.

...

One or more unquoted named values separated by commas. The names should correspond to the id values in the parameter set. The values should be parameter objects or NA values.

Value

The modified parameter set.

Examples

params <- list(lambda = penalty(), alpha = mixture(), `rand forest` = mtry())
pset <- parameters(params)
pset

update(pset, `rand forest` = finalize(mtry(), mtcars), alpha = mixture(c(.1, .2)))

Proportion of data used for validation

Description

Used in embed::step_discretize_xgb().

Usage

validation_set_prop(range = c(0.05, 0.7), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

validation_set_prop()

Tools for working with parameter values

Description

Setters and validators for parameter values. Additionally, tools for creating sequences of parameter values and for transforming parameter values are provided.

Usage

value_validate(object, values, ..., call = caller_env())

value_seq(object, n, original = TRUE)

value_sample(object, n, original = TRUE)

value_transform(object, values)

value_inverse(object, values)

value_set(object, values)

Arguments

object

An object with class quant_param.

values

A numeric vector or list (including Inf). Values cannot include unknown(). For value_validate(), the units should be consistent with the parameter object's definition.

...

These dots are for future extensions and must be empty.

call

The call passed on to cli::cli_abort().

n

An integer for the (maximum) number of values to return. In some cases where a sequence is requested, the result might have less than n values. See Details.

original

A single logical. Should the range values be in the natural units (TRUE) or in the transformed space (FALSE, if applicable)?

Details

For sequences of integers, the code uses unique(floor(seq(min, max, length.out = n))) and this may generate an uneven set of values shorter than n. This also means that if n is larger than the range of the integers, a smaller set will be generated. For qualitative parameters, the first n values are returned.

For quantitative parameters, any values contained in the object are sampled with replacement. Otherwise, a sequence of values between the range values is returned. It is possible that less than n values are returned.

For qualitative parameters, sampling of the values is conducted with replacement. For qualitative values, a random uniform distribution is used.

Value

value_validate() throws an error or silently returns values if they are contained in the values of the object.

value_transform() and value_inverse() return a vector of numeric values.

value_seq() and value_sample() return a vector of values consistent with the type field of object.

Examples

library(dplyr)

penalty() %>% value_set(-4:-1)

# Is a specific value valid?
penalty()
penalty() %>% range_get()
value_validate(penalty(), 17)

# get a sequence of values
cost_complexity()
cost_complexity() %>% value_seq(4)
cost_complexity() %>% value_seq(4, original = FALSE)

on_log_scale <- cost_complexity() %>% value_seq(4, original = FALSE)
nat_units <- value_inverse(cost_complexity(), on_log_scale)
nat_units
value_transform(cost_complexity(), nat_units)

# random values in the range
set.seed(3666)
cost_complexity() %>% value_sample(2)

Number of tokens in vocabulary

Description

Used in textrecipes::step_tokenize_sentencepiece() and textrecipes::step_tokenize_bpe().

Usage

vocabulary_size(range = c(1000L, 32000L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

vocabulary_size()

Parameter for "double normalization" when creating token counts

Description

Used in textrecipes::step_tf().

Usage

weight(range = c(-10, 0), trans = transform_log10())

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

weight()

Kernel functions for distance weighting

Description

Kernel functions for distance weighting

Usage

weight_func(values = values_weight_func)

values_weight_func

Arguments

values

A character string of possible values. See values_weight_func in examples below.

Format

An object of class character of length 10.

Details

This parameter is used in parsnip:::nearest_neighbors().

Examples

values_weight_func
weight_func()

Term frequency weighting methods

Description

Term frequency weighting methods

Usage

weight_scheme(values = values_weight_scheme)

values_weight_scheme

Arguments

values

A character string of possible values. See values_weight_scheme in examples below.

Format

An object of class character of length 5.

Details

This parameter is used in textrecipes::step_tf().

Examples

values_weight_scheme
weight_scheme()

Parameter for the moving window size

Description

Used in recipes::step_window() and recipes::step_impute_roll().

Usage

window_size(range = c(3L, 11L), trans = NULL)

Arguments

range

A two-element vector holding the defaults for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the transformed units.

trans

A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

Examples

window_size()